AICAR induces Nrf2 activation by an AMPK-independent mechanism in hepatocarcinoma cells.
نویسندگان
چکیده
Hepatocellular carcinoma is one of the most frequent tumor types worldwide and oxidative stress represents a major risk factor in pathogenesis of liver diseases leading to HCC. Nuclear factor erythroid 2-related factor (Nrf2) is a transcription factor activated by oxidative stress that governs the expression of many genes which constitute the antioxidant defenses of the cell. In addition, oxidative stress activates AMP-activated protein kinase (AMPK), which has emerged in recent years as a kinase that controls the redox-state of the cell. Since both AMPK and Nrf2 are involved in redox homeostasis, we investigated whether there was a crosstalk between the both signaling systems in hepatocarcinoma cells. Here, we demonstrated that AMPK activator AICAR, in contrary to the A769662 allosteric activator, induces Nrf2 activation and concomitantly modulates the basal redox state of the hepatocarcinoma cells. When the expression of Nrf2 is knocked down, AICAR failed to induce its effect on redox state. These data highlight a major role of Nrf2 signaling pathway in mediating the AICAR effect on basal oxidative state. Furthermore, we demonstrated that AICAR metabolization by the cell is required to induce Nrf2 activation while, the silencing of AMPK does not have any effect on Nrf2 activation. This suggests that AICAR-induced Nrf2 activation is independent of AMPK activity. In conclusion, we identified AICAR as a potent modulator of the redox state of human hepatocarcinoma cells, via the Nrf2 signaling pathway and in an AMPK-independent mechanism.
منابع مشابه
5-aminoimidazole-4-carboxamide Riboside Induces Apoptosis Through AMP-activated Protein Kinase-independent and NADPH Oxidase-dependent Pathways
It is debatable whether AMP-activated protein kinase (AMPK) activation is involved in anti-apoptotic or pro-apoptotic signaling. AICAR treatment increases AMPK-α1 phosphorylation, decreases intracellular reactive oxygen species (ROS) levels, and significantly increases Annexin V-positive cells, DNA laddering, and caspase activity in human myeloid cell. AMPK activation is therefore implicated in...
متن کاملHomocysteine Induces Heme Oxygenase-1 Expression via Transcription Factor Nrf2 Activation in HepG2 Cells
Background: Elevated level of plasma homocysteine has been related to various diseases. Patients with hyperhomocysteinemia can develop hepatic steatosis and fibrosis. We hypothesized that oxidative stress induced by homocysteine might play an important role in pathogenesis of liver injury. Also, the cellular response designed to combat oxidative stress is primarily controlled by the transcripti...
متن کاملAICAR induces apoptosis independently of AMPK and p53 through up-regulation of the BH3-only proteins BIM and NOXA in chronic lymphocytic leukemia cells.
5-Aminoimidazole-4-carboxamide riboside or acadesine (AICAR) induces apoptosis in chronic lymphocytic leukemia (CLL) cells. A clinical study of AICAR is currently being performed in patients with this disease. Here, we have analyzed the mechanisms involved in AICAR-induced apoptosis in CLL cells in which it activates its only well-known molecular target, adenosine monophosphate-activated protei...
متن کاملActivation of AMP-kinase by AICAR induces apoptosis of DU-145 prostate cancer cells through generation of reactive oxygen species and activation of c-Jun N-terminal kinase.
The growth of cancer cells is limited by energy supply which is regulated by the energy sensor AMP-kinase (AMPK). Hence, mimicking a low energy state may inhibit cancer growth and may be exploited in anticancer therapies. In the present study, the impact of AMPK activation on cell growth and apoptosis of DU-145 prostate cancer cells was investigat...
متن کاملAMPK-dependent and independent effects of AICAR and compound C on T-cell responses
As a master metabolic sensor, AMP-activated protein kinase (AMPK) is involved in different fundamental cellular processes. Regulation of AMPK activity either by agonists (e.g., AICAR) or by antagonists (e.g., Compound C) has been widely employed to study the physiological functions of AMPK. However, mounting evidence indicates AMPK-independent effects for these chemicals and how they regulate i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemical pharmacology
دوره 91 2 شماره
صفحات -
تاریخ انتشار 2014