Estimating vegetation water content with hyperspectral data for different canopy scenarios: Relationships between AVIRIS and MODIS indexes

نویسندگان

  • Yen-Ben Cheng
  • Pablo J. Zarco-Tejada
  • David Riaño
  • Carlos A. Rueda
  • Susan L. Ustin
چکیده

Three linked leaf and canopy radiative transfer models were used to assess uncertainties in three vegetation architectures for the relationships between canopy water content and Equivalent Water Thickness (EWT). The leaf radiative transfer model PROSPECT was linked to SAILH, rowMCRM, and FLIM canopy reflectance models to generate synthetic spectra for a range of leaf and canopy parameters under closed, rowstructured, and forest canopy architectures, respectively. Leaf water content (Cw) and leaf area index (LAI) were used to calculate canopy water content. Leaf and canopy parameters that affect the retrieval of EWT, estimated by the MODTRAN-based fitting technique, were used to investigate their influence on the water content estimates. Results showed a consistent relationship between retrieved EWT and canopy water content for the different simulated architectural scenarios. It was shown that EWTwas negatively affected by leaf dry matter and soil background. Retrievals of EWT from hyperspectral Advanced Visible Infrared Imaging Spectrometer (AVIRIS) imagery at three study sites were then used for cross-validation of the Moderate Resolution Imaging Spectrometer (MODIS) data, assessing the behavior of NDVI, EVI, NDWI, and SIWSI as potential indicators of vegetation water content. All four MODIS indexes showed consistent agreement with retrievals of EWT from AVIRIS imagery at the agricultural site and the savanna–shrub site, with EVI having the highest correlation. However, at the conifer forest study site the two water indexes, NDWI and SIWSI, yielded better agreement with retrievals of EWT than NDVI and EVI. The performance of NDVI was inconsistent across sites. This manuscript demonstrates the importance of canopy architecture when estimating EWT by showing that large errors are obtained when EWT estimates derived from absorption feature curve-fitting are applied to different canopy types. These errors are propagated in simple indexes that produce inconsistent results when applied to divergent vegetation conditions. © 2006 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperspectral versus multispectral data for estimating leaf area index in four different biomes

Motivated by the increasing importance of hyperspectral remote sensing data, this study sought to determine whether current-generation narrow-band hyperspectral remote sensing data could better track vegetation leaf area index (LAI) than traditional broad-band multispectral data. The study takes advantage of a unique dataset, wherein field measurements of LAI were acquired at the same general t...

متن کامل

Detection of interannual vegetation responses to climatic variability using AVIRIS data in a coastal savanna in California

Ecosystem responses to interannual weather variability are large and superimposed over any long-term directional climatic responses making it difficult to assign causal relationships to vegetation change. Better understanding of ecosystem responses to interannual climatic variability is crucial to predicting long-term functioning and stability. Hyperspectral data have the potential to detect ec...

متن کامل

Evaluation of hyperspectral data for pasture estimate in the Brazilian Amazon using field and imaging spectrometers

We used two hyperspectral sensors at two different scales to test their potential to estimate biophysical properties of grazed pastures in Rondônia in the Brazilian Amazon. Using a field spectrometer, ten remotely sensed measurements (i.e., two vegetation indices, four fractions of spectral mixture analysis, and four spectral absorption features) were generated for two grass species, Brachiaria...

متن کامل

Estimation of Vegetation Water Content with MODIS data and Radiative Transfer Simulation

Radiative-transfer physically-based studies have previously demonstrated the relationship between leaf water content and leaf-level reflectance in the near-infrared spectral region. The successful scaling up of such methods to the canopy level requires modeling the effect of canopy structure and viewing geometry on reflectance bands and optical indices used for estimation of water content, such...

متن کامل

Water content estimation in vegetation with MODIS reflectance data and model inversion methods

Statistical and radiative-transfer physically based studies have previously demonstrated the relationship between leaf water content and leaf-level reflectance in the near-infrared spectral region. The successful scaling up of such methods to the canopy level requires modeling the effect of canopy structure and viewing geometry on reflectance bands and optical indices used for estimation of wat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006