Mechanisms of the penetration of ultra-high molecular weight polyethylene composite beams

نویسنده

  • J. P. Attwood
چکیده

A number of mechanisms have been proposed for the penetration of laminates comprising ultra-high molecular weight polyethylene (UHMWPE) fibres in a polymeric matrix. Two-dimensional ballistic experiments are conducted in order to directly observe the transient deformation and failure processes occurring immediately under the projectile via high-speed photography. Two sets of experiments were conducted on [0°/90°]n laminate beams. First, back-supported and free-standing beams were impacted by cuboidal projectiles of varying mass and fixed geometry. The observations indicate that in both cases, failure occurs in a progressive manner, with plies first failing immediately under the impact zone. The dynamic failure mode is qualitatively similar to that in a quasi-static indentation tests, and attributed to tensile ply failure by the generation of indirect tension within the plies. Direct membrane stretching is ruled out as failure that occurred with negligible beam deflection. In the second set of experiments, the projectile mass was kept constant and its width varied. No dependence of the projectile width was observed in either quasi-static indentation or dynamic penetration tests. This strongly suggests that failure is not governed by a shear process at the edge of the projectile. The observations presented here therefore suggest that tensile ply failure by indirect tension rather than membrane stretching or shear failure at the edges of the projectile is the dominant penetration mechanism in UHMWPE laminates. © 2016 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrical properties of UHMWPE/graphite nanoplates composites obtained by in-situ polymerization method

There are described nanocomposites based on ultra high molecular weight polyethylene and graphite nanoplates prepared by in-situ polymerization method. It is carried out a comprehensive study of electric properties of these composites, including direct current (dc) and alternating current (ac) properties. There is explored dependence of the conductivity and dielectric permeability on filler con...

متن کامل

Study on Protection Mechanism of 30CrMnMo-UHMWPE Composite Armor

The penetration of a 30CrMnMo ultra-high molecular weight polyethylene armor by a high-speed fragment was investigated via experiments and simulations. Analysis of the projectile revealed that the nose (of the projectile) is in the non-equilibrium state at the initial stage of penetration, and the low-speed regions undergo plastic deformation. Subsequently, the nose-tail velocities of the proje...

متن کامل

Design and Fabrication of Polymer-ceramic Composite Hip Prosthesis

A composite hip prosthesis (CHP) made from alumina reinforced ultra high molecular weight polyethylene (UHMWPE) was designed and manufactured. The main objective of the study was to fabricate the composite hip prosthesis which would be an ideal replacement of metallic one as bone is a composite material consisting of collagen fibre matrix and embedded hydroxyapatite mineral. With this idea we d...

متن کامل

Radiostereometric analysis study of tantalum compared with titanium acetabular cups and highly cross-linked compared with conventional liners in young patients undergoing total hip replacement.

BACKGROUND Radiostereometric analysis provides highly precise measurements of component micromotion relative to the bone that is otherwise undetectable by routine radiographs. This study compared, at a minimum of five years following surgery, the micromotion of tantalum and titanium acetabular cups and femoral head penetration in highly cross-linked polyethylene liners and conventional (ultra-h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016