SOME IDENTITIES ON THE BERNSTEIN AND q-GENOCCHI POLYNOMIALS
نویسندگان
چکیده
Let p be a fixed odd prime number. Throughout this paper, Zp, Qp and Cp will denote the ring of p-adic rational integers, the field of p-adic rational numbers, and the completion of algebraic closure of Qp, respectively. Let N be the set of natural numbers and N = N ∪ {0}. The p-adic norm is normally defined by |p|p = 1/p. As an indeterminate, we assume that q ∈ Cp with |1 − q|p < 1 (see [1-43]). Let UD(Zp) be the space of uniformly differentiable functions on Zp. For f ∈ UD(Zp), the fermionic p-adic integral on Zp is defined by T. Kim as follows:
منابع مشابه
Some Identities on the Twisted (h, q)-Genocchi Numbers and Polynomials Associated with q-Bernstein Polynomials
Let p be a fixed odd prime number. Throughout this paper, we always make use of the following notations: Z denotes the ring of rational integers, Zp denotes the ring of padic rational integer, Qp denotes the ring of p-adic rational numbers, and Cp denotes the completion of algebraic closure of Qp, respectively. Let N be the set of natural numbers and Z N {0}. Let Cpn {ζ | ζpn 1} be the cyclic g...
متن کاملSome identities on the weighted q-Euler numbers and q-Bernstein polynomials
Recently, Ryoo introduced the weighted q-Euler numbers and polynomials which are a slightly different Kim’s weighted q-Euler numbers and polynomials(see C. S. Ryoo, A note on the weighted q-Euler numbers and polynomials, 2011]). In this paper, we give some interesting new identities on the weighted q-Euler numbers related to the q-Bernstein polynomials 2000 Mathematics Subject Classification 11...
متن کاملSome Identities on the (h, q)-Tangent Polynomials and Bernstein Polynomials
In this paper, we investigate some properties for the (h, q)-tangent numbers and polynomials. By using these properties, we obtain some interesting identities on the (h, q)-tangent polynomials and Bernstein polynomials. Throughout this paper, let p be a fixed odd prime number. The symbol, Zp, Qp and Cp denote the ring of p-adic integers, the field of p-adic rational numbers and the completion o...
متن کاملSome Identities on the q-Tangent Polynomials and Bernstein Polynomials
In this paper, we investigate some properties for the q-tangent numbers and polynomials. By using these properties, we give some interesting identities on the q-tangent polynomials and Bernstein polynomials. Throughout this paper, let p be a fixed odd prime number. The symbol, Zp, Qp and Cp denote the ring of p-adic integers, the field of p-adic rational numbers and the completion of algebraic ...
متن کاملSome Identities on the q - Bernoulli Numbers and Polynomials with Weight 0
and Applied Analysis 3 where n, k ∈ Z see 1, 9, 10 . For n, k ∈ Z , the p-adic Bernstein polynomials of degree n are defined by Bk,n x k x k 1 − x n−k for x ∈ Zp, see 1, 10, 11 . In this paper, we consider Bernstein polynomials to express the p-adic q-integral on Zp and investigate some interesting identities of Bernstein polynomials associated with the q-Bernoulli numbers and polynomials with ...
متن کامل