Integrated microelectronic device for label-free nucleic acid amplification and detection.

نویسندگان

  • Chih-Sheng Johnson Hou
  • Michel Godin
  • Kristofor Payer
  • Raj Chakrabarti
  • Scott R Manalis
چکیده

We present an integrated microelectronic device for amplification and label-free detection of nucleic acids. Amplification by polymerase chain reaction (PCR) is achieved with on-chip metal resistive heaters, temperature sensors, and microfluidic valves. We demonstrate a rapid thermocycling with rates of up to 50 degrees C s(-1) and a PCR product yield equivalent to that of a bench-top system. Amplicons within the PCR product are detected by their intrinsic charge with a silicon field-effect sensor. Similar to existing optical approaches with intercalators such as SYBR Green, our sensing approach can directly detect standard double-stranded PCR product, while in contrast, our sensor does not require labeling reagents. By combining amplification and detection on the same device, we show that the presence or absence of a particular DNA sequence can be determined by converting the analog surface potential output of the field-effect sensor to a simple digital true/false readout.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Designing a Label Free Aptasensor for Detection of Methamphetamine

A label-free electrochemical nucleic acid aptasensor for the detection of methamphetamine (MA) by the immobilization of thiolated self-assembled DNA sequences on a gold nanoparticles-chitosan modified electrode is constructed. When MA was complexed specifically to the aptamer, the configuration of the nucleic acid aptamer switched to a locked structure and the interface of the biosensor changed...

متن کامل

An Integrated Microelectronic Device for Label-free nucleic Acid Amplification and Detection

While there have been extensive advances in miniaturized polymerase chain reaction (PCR) systems, progress on integrated microfabricated readout mechanisms has been rather limited, and most systems rely on off-chip optical detection modules to measure the final product. Existing optical detection platforms typically include CCD cameras, photodiodes, and photomultiplier tubes. While such hardwar...

متن کامل

Reporter-triggered isothermal exponential amplification strategy in ultrasensitive homogeneous label-free electrochemical nucleic acid biosensing.

A simple and novel reporter-triggered isothermal exponential amplification reaction (R-EXPAR) integrated with a miniaturized electrochemical device was developed, which achieved excellent improvement (five orders of magnitude) of sensitivity toward reporter, G-quadruplex. This R-EXPAR strategy has been successfully implemented to construct a homogeneous label-free electrochemical sensor for ult...

متن کامل

Evaluation of Nucleic Acid Sequence Based Amplification (NASBA) and Reverse Transcription Polymerase Chain Reaction for Detection of Coxsackievirus B3 in Cell Culture and Animal Tissue Samples

Enteroviruses are the causative agents of a number of diseases in humans. Group B coxsackieviruses are believed to be the most common viral agents responsible for human heart disease. Genomic data of enteroviruses has allowed developing new molecular approaches such as Nucleic Acid Sequence Based Amplification (NASBA) for detection of such viruses. In this study, coxsackievirus B3 (CVB3) was de...

متن کامل

A simulation study on the performance of various label-free electronic biosensors

The efficient detection of charged biomolecules by biosensor with appropriate semiconducting nanomaterials and with optimum device geometry has caught tremendous research interest in the present decade. Here, the performance of various label-free electronic biosensors to detect bio-molecules is investigated by simulation technique. Silicon nanowire sensor, nanosphere sensor and double gate fiel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Lab on a chip

دوره 7 3  شماره 

صفحات  -

تاریخ انتشار 2007