An Evolutionary Multi-objective Neural Network Optimizer with Bias-Based Pruning Heuristic

نویسندگان

  • Prospero C. Naval
  • John Paul T. Yusiong
چکیده

Neural network design aims for high classification accuracy and low network architecture complexity. It is also known that simultaneous optimization of both model accuracy and complexity improves generalization while avoiding overfitting on data. We describe a neural network training procedure that uses multi-objective optimization to evolve networks which are optimal both with respect to classification accuracy and architectural complexity. The NSGA-II algorithm is employed to evolve a population of neural networks that are minimal in both training error and a Minimum Description Length-based network complexity measure. We further propose a pruning rule based on the following heuristic: connections to or from a node may be severed if their weight values are smaller than the network’s smallest bias. Experiments on benchmark datasets show that the proposed evolutionary multi-objective approach to neural network design employing the bias-based pruning heuristic yields networks that have far fewer connections without seriously compromising generalization performance when compared to other existing evolutionary optimization algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applications of multi-objective structure optimization

We present an application of multi-objective evolutionary optimization of feed-forward neural networks (NN) to two real world problems, car and face classification. The possibly conflicting requirements on the NN are speed and classification accuracy, both of which can enhance the embedding systems as a whole. We compare the results to the outcome of a greedy optimization heuristic (magnitude-b...

متن کامل

Artificial Neural Network Based Multi-Objective Evolutionary Optimization of a Heavy-Duty Diesel Engine

In this study the performance and emissions characteristics of a heavy-duty, direct injection, Compression ignition (CI) engine which is specialized in agriculture, have been investigated experimentally. For this aim, the influence of injection timing, load, engine speed on power, brake specific fuel consumption (BSFC), peak pressure (PP), nitrogen oxides (NOx), carbon dioxide (CO2), Carbon mon...

متن کامل

A Comparative Study of Neural Network Optimization Techniques

In the last years we developed ENZO, an evolutionary neural network optimizer which surpasses other algorithms with regard to performance and scalability. In this study we compare ENZO to standard techniques for topology optimization: Optimal Brain Surgeon (OBS), Magnitude based Pruning (MbP), and to an improved algorithm deduced from OBS (unit-OBS). Furthermore we compare results to a newly pr...

متن کامل

A multi-objective evolutionary approach for integrated production-distribution planning problem in a supply chain network

Integrated production-distribution planning (PDP) is one of the most important approaches in supply chain networks. We consider a supply chain network (SCN) to consist of multi suppliers, plants, distribution centers (DCs), and retailers. A bi-objective mixed integer linear programming model for integrating production-distribution designed here aim to simultaneously minimize total net costs in ...

متن کامل

Neuro-Optimizer: A New Artificial Intelligent Optimization Tool and Its Application for Robot Optimal Controller Design

The main objective of this paper is to introduce a new intelligent optimization technique that uses a predictioncorrectionstrategy supported by a recurrent neural network for finding a near optimal solution of a givenobjective function. Recently there have been attempts for using artificial neural networks (ANNs) in optimizationproblems and some types of ANNs such as Hopfield network and Boltzm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007