Birkhoff normal form for the periodic Toda lattice

نویسندگان

  • Andreas Henrici
  • Thomas Kappeler
چکیده

with potential V (x) = γe + V1x + V2 and γ, δ, V1, V2 ∈ R constants. The Toda lattice has been introduced by Toda [12] and studied extensively in the sequel. It is an FPU lattice, i.e. a Hamiltonian system of particles in one space dimension with nearest neighbor interaction. Models of this type have been studied by Fermi-Pasta-Ulam [FPU]. In numerical experiments they found recurrent features for the lattices they considered. Despite an enormous effort from the physics and mathematics community, some of these numerical experiments still defy an explanation. For a recent account of the fascinating history of the FPU problem, see e.g. [1]. At least in the case of the periodic Toda Supported in part by the Swiss National Science Foundation Supported in part by the Swiss National Science Foundation, the programme SPECT and the European Community through the FP6 Marie Curie RTN ENIGMA (MRTN-CT-20045652) 2000 Mathematics Subject Classification: 37J35, 37J40, 70H08

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Birkhoff coordinates for the periodic Toda lattice

In this paper we prove that the periodic Toda lattice admits globally defined Birkhoff coordinates.

متن کامل

An integrable approximation for the Fermi-Pasta-Ulam lattice

This contribution presents a review of results obtained from computations of approximate equations of motion for the Fermi-Pasta-Ulam lattice. These approximate equations are obtained as a finite-dimensional Birkhoff normal form. It turns out that in many cases, the Birkhoff normal form is suitable for application of the KAM theorem. In particular this proves Nishida’s 1971 conjecture stating t...

متن کامل

Global action-angle variables for the periodic Toda lattice

In this paper we construct global action-angle variables for the periodic Toda lattice.

متن کامل

Normal form for odd periodic FPU chains

In this paper we prove that near the equilibirum position any periodic FPU chain with an odd number of particles admits a Birkhoff normal form up to order 4, and we obtain an explicit formula of the Hessian of its Hamiltonian at the fixed point.

متن کامل

Separation of variables for the D n type periodic Toda lattice

We prove separation of variables for the most general (Dn type) periodic Toda lattice with 2 × 2 Lax matrix. It is achieved by finding proper normalisation for the corresponding Baker-Akhiezer function. Separation of variables for all other periodic Toda lattices associated with infinite series of root systems follows by taking appropriate limits.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008