An Experiment and Detection Scheme for Cavity-based Light Cold Dark Matter Particle Searches
نویسندگان
چکیده
A resonance detection scheme and some useful ideas for cavity-based searches of light cold dark matter particles (such as axions) are presented, as an effort to aid in the on-going endeavors in this direction as well as for future experiments, especially in possibly developing a table-top experiment. The scheme is based on our idea of a resonant detector, incorporating an integrated Tunnel Diode (TD) and a GaAs HEMT/HFET (High Electron Mobility Transistor/Heterogenous FET) transistor amplifier, weakly coupled to a cavity in a strong transverse magnetic field. The TD-amplifier combination is suggested as a sensitive and simple technique to facilitate resonance detection within the cavity while maintaining excellent noise performance, whereas our proposed Halbach magnet array could serve as a low-noise and permanent solution replacing the conventional electromagnets scheme. We present some preliminary test results which demonstrate resonance detection from simulated test signals in a small optimal axion mass range with superior Signal-to-Noise Ratios (SNR). Our suggested design also contains an overview of a simpler on-resonance dc signal read-out scheme replacing the complicated heterodyne readout. We believe that all these factors and our propositions could possibly improve or at least simplify the resonance detection and read-out in cavity-based DM particle detection searches (and other spectroscopy applications) and reduce the complications (and associated costs), in addition to reducing the electromagnetic interference and background.
منابع مشابه
Messenger Sneutrinos as Cold Dark Matter
In models where supersymmetry breaking is communicated into the visible sector via gauge interactions the lightest supersymmetric particle is typically the gravitino which is too light to account for cold dark matter. We point out that the lightest messenger sneutrinos with mass in the range of one to three TeV may serve as cold dark matter over most of the parameter space due to one-loop elect...
متن کاملCasting Light on Dark Matter
The prospects for detecting a candidate supersymmetric dark matter particle at the LHC are reviewed, and compared with the prospects for direct and indirect searches for astrophysical dark matter. The discussion is based on a frequentist analysis of the preferred regions of the Minimal supersymmetric extension of the Standard Model with universal soft supersymmetry breaking (the CMSSM). LHC sea...
متن کاملElectroweak Baryogenesis, Large Yukawas and Dark Matter
It has recently been shown that the electroweak baryogenesis mechanism is feasible in Standard Model extensions containing extra fermions with large Yukawa couplings. We show here that the lightest of these fermionic fields can naturally be a good candidate for cold dark matter. We find regions in the parameter space where the thermal relic abundance of this particle is compatible with the dark...
متن کاملDeeply Inelastic Dark Matter: Beam Dumps as Wimp Cannons
We consider a phenomenological approach to constraining dark matter interactions with quarks by the exchange of a light mediator particle. We find that, for low WIMP masses, an old beam dump experiment provides stronger bounds than currently obtainable at the LHC with monojet searches. 1 A toy model for light dark matter The search for particle dark matter (DM) benefits from many and diverse ap...
متن کاملCavity Microwave Searches for Cosmological Axions
This chapter will cover the search for dark matter axions based on microwave cavity experiments proposed by Pierre Sikivie. The topic begins with a brief overview of halo dark matter and the axion as a candidate. The principle of resonant conversion of axions in an external magnetic field will be described as well as practical considerations in optimizing the experiment as a signal-to-noise pro...
متن کامل