Control method for the optical components of a dynamically reconfigurable optical platform.

نویسندگان

  • Xianchao Wang
  • Junjie Peng
  • Shan Ouyang
چکیده

We propose a control method for the optical components of a dynamically reconfigurable optical platform, the ternary optical computer (TOC). The optical components are made of liquid-crystal cell arrays (LCCAs) and polarizers, so the control method is for generating the pilot signals of the LCCAs to meet user demands. In this work, we first briefly introduce the TOC theory, the modules in the TOC monitor system, and the addressing of these LCCAs. Then we focus on the method for generating the control information (CI) of optical components, i.e., the encoder and the operator in the TOC according to the operands and the information about the basic operating units needed by an operation. In addition, we define data structures, some of which store the information to generate the CI and others that mainly store the generated CI. Finally we provide an example to verify the proposed method and conduct an experiment to generate the LCCA CI. The results demonstrate the correctness and feasibility of the method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

All-Optical Reconfigurable-Tunable 1×N Power Splitter Using Soliton Breakup

In this paper, we numerically simulated a glass-based all-optical 1×N power splitter with eleven different configurations using soliton breakup in a nonlinear medium. It is shown that in addition to reconfigurability of the proposed splitter, its power splitting ratio is tunable up to some extent values too. Nonlinear semivectorial iterative finite difference beam propagation method (IFD-...

متن کامل

Tunable Liquid Microlenses formed from Dynamically Reconfigurable Double Emulsions

Micro-scale optical components capable of on-demand reconfiguration of their internal morphology and composition would enable unprecedented control of light propogation on the microscale. Double emulsions formed from immiscible hydrocarbons and fluorocarbons offer a promising platform as reconfigurable micro-optical lenses. These droplet-based lenses can be reconfigured to strongly focusing, ne...

متن کامل

Acceleration of Optical-Flow Extraction Using Dynamically Reconfigurable ALU Arrays

An effective way to implement image processing applications is to use embedded processors with dynamically reconfigurable accelerator cores. The processing speed of these processors are not only depends on the parallelism, but also depend on the local memory utilization since the local memories are much faster than the global memory. In this paper, we accelerate the optical-flow extraction algo...

متن کامل

An Efficient Method for Model Reduction in Diffuse Optical Tomography

We present an efficient method for the reduction of model equations in the linearized diffuse optical tomography (DOT) problem. We first implement the maximum a posteriori (MAP) estimator and Tikhonov regularization, which are based on applying preconditioners to linear perturbation equations. For model reduction, the precondition is split into two parts: the principal components are consid...

متن کامل

Towards micro-assembly of hybrid MOEMS components on reconfigurable silicon free-space micro-optical bench

The 3D integration of hybrid chips is a viable approach for the micro-optical technologies to reduce the costs of assembly and packaging. In this paper a technology platform for the hybrid integration of MOEMS components on a reconfigurable free-space silicon micro-optical bench is presented. In this approach a desired optical component (e.g. micromirror, microlens) is integrated with removable...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied optics

دوره 50 5  شماره 

صفحات  -

تاریخ انتشار 2011