Stratospheric variability and trends in models used for the IPCC AR4

نویسندگان

  • E. C. Cordero
  • M. de F. Forster
چکیده

Atmosphere and ocean general circulation model (AOGCM) experiments for the Intergovernmental Panel on Climate Change Fourth Assessment Report (AR4) are analyzed to better understand model variability and assess the importance of various forcing mechanisms on stratospheric trends during the 20th century. While models represent the climatology of the stratosphere reasonably well in comparison with NCEP reanalysis, there are biases and large variability among models. In general, AOGCMs are cooler than NCEP throughout the stratosphere, with the largest differences in the tropics. Around half the AOGCMs have a top level beneath ∼2 hPa and show a significant cold bias in their upper levels (∼10 hPa) compared to NCEP, suggesting that these models may have compromised simulations near 10 hPa due to a low model top or insufficient stratospheric levels. In the lower stratosphere (50 hPa), the temperature variability associated with large volcanic eruptions is absent in about half of the models, and in the models that do include volcanic aerosols, half of those significantly overestimate the observed warming. There is general agreement on the vertical structure of temperature trends over the last few decades, differences between models are explained by the inclusion of different forcing mechanisms, such as stratospheric ozone depletion and volcanic aerosols. However, even when human and natural forcing agents are included in the simulations, significant differences remain between observations and model trends, particularly in the upper tropical troposphere (200 hPa–100 hPa), where, since 1979, models show a warming trend and the observations a cooling trend. Correspondence to: E. C. Cordero ([email protected])

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The impact of stratospheric ozone recovery on the Southern Hemisphere westerly jet.

In the past several decades, the tropospheric westerly winds in the Southern Hemisphere have been observed to accelerate on the poleward side of the surface wind maximum. This has been attributed to the combined anthropogenic effects of increasing greenhouse gases and decreasing stratospheric ozone and is predicted to continue by the Intergovernmental Panel on Climate Change/Fourth Assessment R...

متن کامل

Testing climate models using GPS radio occultation: A sensitivity analysis

[1] We survey the IPCC AR4 models’ responses to SRES A1B forcing in order to evaluate a prediction of climate change common to all models and testable using GPS radio occultation data over the coming decades. Of the IPCC AR4 models that submitted runs of the SRES A1B forcing scenario, we select twelve because of the timeliness of their submission. Trends in the global average surface air temper...

متن کامل

Historical SAM Variability. Part II: Twentieth-Century Variability and Trends from Reconstructions, Observations, and the IPCC AR4 Models*

This second paper examines the Southern Hemisphere annular mode (SAM) variability from reconstructions, observed indices, and simulations from 17 Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) models from 1865 to 2005. Comparisons reveal the models do not fully simulate the duration of strong natural variability within the reconstructions during the 1930s and 19...

متن کامل

Arctic Oscillation response to volcanic eruptions in the IPCC AR4 climate models

[1] Stratospheric sulfate aerosol particles from strong volcanic eruptions produce significant transient cooling of the troposphere and warming of the lower stratosphere. The radiative impact of volcanic aerosols also produces a response that generally includes an anomalously positive phase of the Arctic Oscillation (AO) that is most pronounced in the boreal winter. The main atmospheric thermal...

متن کامل

What governs the spread in shortwave forcings in the transient IPCC AR4 models?

[1] The coupled global atmospheric-ocean models used for transient simulations in the IPCC AR4 report differences in the present-day shortwave forcing of more than 2 W/m. We show here that about 1.3 W/m of this spread could be explained by the different methods used to calculate cloud droplet number concentration (CDNC) from aerosol mass concentrations. Although we cannot rule out that other fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006