Ultrasound Exposure Improves the Targeted Therapy Effects of Galactosylated Docetaxel Nanoparticles on Hepatocellular Carcinoma Xenografts
نویسندگان
چکیده
PURPOSE The distribution of targeted nanoparticles in tumor tissue is affected by a combination of various factors such as the physicochemical properties of the nanoparticles, tumor hemoperfusion and tumor vascular permeability. In this study, the impact of the biological effects of ultrasound on nanoparticle targeting to liver carcinoma was explored. METHODS The copolymer MePEG-PLGA was used to prepare the galactosylated docetaxel nanoparticles (GDN), and the physical and chemical properties as well as the acute toxicity were then assayed. The impact of ultrasound exposure (UE) on tumor hemoperfusion was observed by contrast-enhanced ultrasonography (CEUS), and the distribution of docetaxel in tumors and liver were detected by high performance liquid chromatography (HPLC). In the GDN combined with UE treatment group, the mice were injected intravenously with GDN, followed by ultrasound exposure on the human hepatocellular carcinoma xenografts. Twenty-eight days post-administration, the tumor growth inhibition rate was calculated, and the expression of Survivin and Ki67 in tumor tissues were determined by immunohistochemistry assay and quantitative real-time PCR. RESULTS The mean size of prepared liver-targeting nanoparticles GDN was 209.3 nm, and the encapsulation efficiency was 72.28%. The median lethal dose of GDN was detected as 219.5 mg/kg which was about four times higher than that of docetaxel. After ultrasound exposure, the tumor peak - base intensity difference value, examined by CEUS, increased significantly. The drug content in the tumor was 1.96 times higher than in the GDN treated control. In vivo, GDN intravenous injection combined with ultrasound exposure therapy achieved the best anti-tumor effect with a tumor growth inhibition rate of 74.2%, and the expression of Survivin and Ki67 were significantly decreased as well. CONCLUSION Ultrasound exposure can improve targeting nanoparticles accumulation in the tumor, and achieve a synergism antitumor effect on the hepatocellular carcinoma xenografts.
منابع مشابه
Effects of Ultrasound Irradiation on the Release Profile of 5-fluorouracil from Magnetic Polylactic co-glycolic Acid Nanocapsules
Background: Drug nano-carriers are one of the most important tools for targeted cancer therapy so that undesired side effects of chemotherapy drugs are minimized. In this area, the use of ultrasound can be helpful in controlling drug release from nanoparticles to achieve higher treatment efficiency.Objective: Here, we studies the effects of ultrasound irradiation on the release profile of 5-flu...
متن کاملGalactosylated poly-L-lysine targeted microbubbles for ultrasound mediated antisense c-myc gene transfection in hepatocellular carcinoma cells
INTRODUCTION The aim of the study was to investigate the efficiency of delivery and targeted binding of c-myc antisense oligodeoxynucleotide (ASODN) and find a novel therapy for hepatic carcinoma. MATERIAL AND METHODS A targeted ultrasound microbubble compound was synthesized to deliver the c-myc ASODN by ultrasound-targeted microbubble destruction (UTMD) and applied in hepatocellular carcino...
متن کاملبررسی سمیت سلولی نانو ذرات داروی Docetaxel با استفاده از کشت سلول های سرطانی HepG2
Background and purpose: Human hepatocellular carcinoma (HCC) is one of the most common causes of death in the world. Targeted drug delivery to cells, tissues or specialized receptor cells is an advanced technology in treatment of HCC. The purpose of this study was to investigate the cytotoxicity properties of DTX nanoparticles. In this research nanoparticles were prepared through radical polyme...
متن کاملTargeted drug and gene delivery systems for lung cancer therapy.
PURPOSE To evaluate the efficacy of a novel docetaxel derivative of deslorelin, a luteinizing hormone-releasing hormone (LHRH) agonist, and its combination in vivo with RGD peptide conjugated nanoparticles encapsulating an antiangiogenic, anti-vascular endothelial growth factor (VEGF) intraceptor (Flt23k; RGD-Flt23k-NP) in H1299 lung cancer cells and/or xenografts in athymic nude BALB/c mice. ...
متن کاملGalactosylated Chitosan Oligosaccharide Nanoparticles for Hepatocellular Carcinoma Cell-Targeted Delivery of Adenosine Triphosphate
Nanoparticles composed of galactosylated chitosan oligosaccharide (Gal-CSO) and adenosine triphosphate (ATP) were prepared for hepatocellular carcinoma cell-specific uptake, and the characteristics of Gal-CSO/ATP nanoparticles were evaluated. CSO/ATP nanoparticles were prepared as a control. The average diameter and zeta potential of Gal-CSO/ATP nanoparticles were 51.03 ± 3.26 nm and 30.50 ± 1....
متن کامل