Therapeutic benefits of cardiotrophin-1 gene transfer in a mouse model of spinal muscular atrophy.
نویسندگان
چکیده
Spinal muscular atrophy (SMA) is a recessive autosomal disorder characterized by degeneration of lower motor neurons caused by mutations of the survival motor neuron gene (SMN1). No curative treatment is known so far. Mutant mice carrying homozygous deletion of Smn exon 7 directed to neurons display skeletal muscle denervation, moderate loss of motor neuron cell bodies and severe axonal degeneration. These features, similar to those found in human SMA, strongly suggest the involvement of a dying back process of motor neurons and led us to test whether neurotrophic factors might have a protective role in SMA. We report here the therapeutic benefits of systemic delivery of cardiotrophin-1 (CT-1), a neurotrophic factor belonging to the IL-6 cytokine family. Intra-muscular injection of adenoviral vector expressing CT-1, even at very low dose, improves median survival, delays motor defect of mutant mice and exerts protective effect against loss of proximal motor axons and aberrant cytoskeletal organization of motor synaptic terminals. In spite of the severity of SMA phenotype in mutant mice, CT-1 is able to slow down disease progression. Neuroprotection could be regarded as valuable therapeutic approach in SMA.
منابع مشابه
Protective effects of cardiotrophin-1 adenoviral gene transfer on neuromuscular degeneration in transgenic ALS mice.
Amyotrophic lateral sclerosis (ALS) is mainly a sporadic neurodegenerative disorder characterized by loss of cortical and spinal motoneurons. Some familial ALS cases (FALS) have been linked to dominant mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1). Transgenic mice overexpressing a mutated form of human SOD1 with a Gly93Ala substitution develop progressive muscle wasting and p...
متن کاملO-27: Preimplantation Genetic Diagnosis in Prevention of Genetic Diseases -Diagnostic of Spinal Muscular Atrophy (SMA)
Background: Preimplantation genetic diagnosis - PGD is currently an established procedure allowing genetic research of oocyte or embryo before implantation to the uterus. Spinal muscular atrophy (SMA) is a neurodegenerative disorder, being the second most common lethal autosomal recessive disease in Caucasians, after cystic fibrosis. There are three clinically different types of which type I (W...
متن کاملSpinal Muscular Atrophy: A Short Review Article
Spinal muscular atrophy (SMA) is a genetic disorder which affect nervous system and is characterized with progressive distal motor neuron weakness. The survival motor neuron (SMN) protein level reduces in patients with SMA. Two different genes code survival motor neuron protein in human genome. Skeletal and intercostal muscles denervation lead to weakness, hypotony, hyporeflexia, respiratory fa...
متن کاملDrawing Word co-occurrence map of Spinal Muscular Atrophy disease
Introduction: The purpose of this article is to evaluate the status of articles in the field of Spinal Muscular Atrophy According to the Scientometrics indices Word co-occurrence map of this field . Methods: The present study is an applied one with a quantitative approach and a descriptive approach. It has been done using scientometrics and the co-occurrence words analysis technique. Document...
متن کاملDelivery of recombinant follistatin lessens disease severity in a mouse model of spinal muscular atrophy.
Spinal muscular atrophy (SMA) is the most common genetic cause of infant mortality. SMA is caused by loss of functional survival motor neuron 1 (SMN1), resulting in death of spinal motor neurons. Current therapeutic research focuses on modulating the expression of a partially functioning copy gene, SMN2, which is retained in SMA patients. However, a treatment strategy that improves the SMA phen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 12 11 شماره
صفحات -
تاریخ انتشار 2003