Organic nitrate and secondary organic aerosol yield from NO3 oxidation of β-pinene evaluated using a gas-phase kinetics/aerosol partitioning model

نویسندگان

  • J. L. Fry
  • A. Kiendler-Scharr
  • A. W. Rollins
  • P. J. Wooldridge
  • S. S. Brown
  • R. C. Cohen
چکیده

The yields of organic nitrates and of secondary organic aerosol (SOA) particle formation were measured for the reaction NO3+β-pinene under dry and humid conditions in the atmosphere simulation chamber SAPHIR at Research Center Jülich. These experiments were conducted at low concentrations of NO3 (NO3+N2O5<10 ppb) and βpinene (peak∼15 ppb), with no seed aerosol. SOA formation was observed to be prompt and substantial (∼50% mass yield under both dry conditions and at 60% RH), and highly correlated with organic nitrate formation. The observed gas/aerosol partitioning of organic nitrates can be simulated using an absorptive partitioning model to derive an estimated vapor pressure of the condensing nitrate species of pvap∼5×10 Torr (6.67×10−4 Pa), which constrains speculation about the oxidation mechanism and chemical identity of the organic nitrate. Once formed the SOA in this system continues to evolve, resulting in measurable aerosol volume decrease with time. The observations of high aerosol yield from NOx-dependent oxidation of monoterpenes provide an example of a significant anthropogenic source of SOA from biogenic hydrocarbon precursors. Estimates of the NO3+βpinene SOA source strength for California and the globe indicate that NO3 reactions with monoterpenes are likely an important source (0.5–8% of the global total) of organic aerosol on regional and global scales. Correspondence to: R. C. Cohen ([email protected])

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Secondary Organic Aerosol Formation and Organic Nitrate Yield from NO3 Oxidation of Biogenic Hydrocarbons

The secondary organic aerosol (SOA) mass yields from NO3 oxidation of a series of biogenic volatile organic compounds (BVOCs), consisting of five monoterpenes and one sesquiterpene (α-pinene, β-pinene, Δ-3-carene, limonene, sabinene, and β-caryophyllene), were investigated in a series of continuous flow experiments in a 10 m(3) indoor Teflon chamber. By making in situ measurements of the nitrat...

متن کامل

Secondary organic aerosol formation from the β-pinene+NO3 system: effect of humidity and peroxy radical fate

The formation of secondary organic aerosol (SOA) from the oxidation of β-pinene via nitrate radicals is investigated in the Georgia Tech Environmental Chamber (GTEC) facility. Aerosol yields are determined for experiments performed under both dry (relative humidity (RH) < 2 %) and humid (RH= 50 % and RH= 70 %) conditions. To probe the effects of peroxy radical (RO2) fate on aerosol formation, “...

متن کامل

A qualitative comparison of secondary organic aerosol yields and composition from ozonolysis of monoterpenes at varying concentrations of NO2

The effect of NO2 on secondary organic aerosol (SOA) formation from ozonolysis of α-pinene, β-pinene, 1-carene, and limonene was investigated using a dark flowthrough reaction chamber. SOA mass yields were calculated for each monoterpene from ozonolysis with varying NO2 concentrations. Kinetics modeling of the first-generation gasphase chemistry suggests that differences in observed aerosol yie...

متن کامل

Organic nitrate aerosol formation via NO3 + biogenic volatile organic compounds in the southeastern United States

Gasand aerosol-phase measurements of oxidants, biogenic volatile organic compounds (BVOCs) and organic nitrates made during the Southern Oxidant and Aerosol Study (SOAS campaign, Summer 2013) in central Alabama show that a nitrate radical (NO3) reaction with monoterpenes leads to significant secondary aerosol formation. Cumulative losses of NO3 to terpenes are correlated with increase in gasand...

متن کامل

Is the gas-particle partitioning in alpha-pinene secondary organic aerosol reversible?

[1] This paper discusses the reversibility of gas-particle partitioning in secondary organic aerosol (SOA) formed from a-pinene ozonolysis in a smog chamber. Previously, phase partitioning has been studied quantitatively via SOA production experiments and qualitatively by perturbing temperature and observing particle evaporation. In this work, two methods were used to isothermally dilute the SO...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009