Wavelet shrinkage using cross - validation

نویسنده

  • G. P. NASON
چکیده

Wavelets are orthonormal basis functions with special properties that show potential in many areas of mathematics and statistics. This article concentrates on the estimation of functions and images from noisy data using wavelet shrinkage. A modified form of twofold cross-validation is introduced to choose a threshold for wavelet shrinkage estimators operating on data sets of length a power of two. The cross-validation algorithm is then extended to data sets of any length and to multi-dimensional data sets. The algorithms are compared to established threshold choosers using simulation. An application to a real data set arising from anaesthesia is presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CVThresh: R Package for Level-Dependent Cross-Validation Thresholding

The core of the wavelet approach to nonparametric regression is thresholding of wavelet coefficients. This paper reviews a cross-validation method for the selection of the thresholding value in wavelet shrinkage of Oh, Kim, and Lee (2006), and introduces the R package CVThresh implementing details of the calculations for the procedures. This procedure is implemented by coupling a conventional c...

متن کامل

Generalized Cross-Validation for Wavelet Shrinkage in Nonparametric Mixed-Effects Models

A nonlinear wavelet shrinkage estimator was proposed in Huang and Lu (2000). Such an estimator combined the asymptotic equivalence to the best linear unbiased prediction and the Bayesian estimation in nonparametric mixed-effects models. In this article a data-driven GCV method is proposed to select hyperparameters. The proposed GCV method has low computational cost and can be applied to one or ...

متن کامل

Fast cross-validatory choice of wavelet smoothness, primary resolution and threshold in wavelet shrinkage using the Kovac-Silverman algorithm

This article introduces a fast cross-validation algorithm that performs wavelet shrinkage on data sets of arbitrary size and design and also simultaneously selects good values of the primary resolution and number of vanishing moments. We demonstrate the utility of our method by suggesting alternative estimates of the conditional mean of the well-known Ethanol data set. Our alternative estimates...

متن کامل

Function Estimation via Wavelet Shrinkage

In this article we study function estimation via wavelet shrinkage for data with long-range dependence. We propose a fractional Gaussian noise model to approximate nonparametric regression with long-range dependence and establish asymp-totics for minimax risks. Because of long-range dependence, the minimax risk and the minimax linear risk converge to zero at rates that diier from those for data...

متن کامل

Bayesian Wavelet Shrinkage for Nonparametric Mixed-effects Models

The main purpose of this article is to study the wavelet shrinkage method from a Bayesian viewpoint. Nonparametric mixed-effects models are proposed and used for interpretation of the Bayesian structure. Bayes and empirical Bayes estimation are discussed. The latter is shown to have the Gauss-Markov type optimality (i.e., BLUP), to be equivalent to a method of regularization estimator (MORE), a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996