The Minimal Height of Quadratic Forms of given Dimension
نویسنده
چکیده
Given an arbitrary n, we consider anisotropic quadratic forms of dimension n over all fields of characteristic = 2 and prove that the height of an n-dimensional excellent form (depending on n only) is the (precise) lower bound of the heights of all forms of dimension n.
منابع مشابه
Isotropy over Function Fields of Pfister Forms
The question of which quadratic forms become isotropic when extended to the function field of a given form is studied. A formula for the minimum dimension of the minimal isotropic forms associated to such extensions is given, and some consequences thereof are outlined. Especial attention is devoted to function fields of Pfister forms. Here, the relationship between excellence concepts and the i...
متن کاملApplications of quadratic D-forms to generalized quadratic forms
In this paper, we study generalized quadratic forms over a division algebra with involution of the first kind in characteristic two. For this, we associate to every generalized quadratic from a quadratic form on its underlying vector space. It is shown that this form determines the isotropy behavior and the isometry class of generalized quadratic forms.
متن کاملApproximating the Distributions of Singular Quadratic Expressions and their Ratios
Noncentral indefinite quadratic expressions in possibly non- singular normal vectors are represented in terms of the difference of two positive definite quadratic forms and an independently distributed linear combination of standard normal random variables. This result also ap- plies to quadratic forms in singular normal vectors for which no general representation is currently available. The ...
متن کاملSome Probability Inequalities for Quadratic Forms of Negatively Dependent Subgaussian Random Variables
In this paper, we obtain the upper exponential bounds for the tail probabilities of the quadratic forms for negatively dependent subgaussian random variables. In particular the law of iterated logarithm for quadratic forms of independent subgaussian random variables is generalized to the case of negatively dependent subgaussian random variables.
متن کاملClassification of quintic eutactic forms
From the classical Voronoi algorithm, we derive an algorithm to classify quadratic positive definite forms by their minimal vectors; we define some new invariants for a class, for which several conjectures are proposed. Applying the algorithm to dimension 5 we obtain the table of the 136 classes in this dimension, we enumerate the 118 eutactic quintic forms, and we verify the Ash formula.
متن کامل