Dynamical Correlations for Circular Ensembles of Random Matrices

نویسندگان

  • Taro Nagao
  • Peter J. Forrester
چکیده

Circular Brownian motion models of random matrices were introduced by Dyson and describe the parametric eigenparameter correlations of unitary random matrices. For symmetric unitary, self-dual quaternion unitary and an analogue of antisymmetric hermitian matrix initial conditions, Brownian dynamics toward the unitary symmetry is analyzed. The dynamical correlation functions of arbitrary number of Brownian particles at arbitrary number of times are shown to be written in the forms of quaternion determinants, similarly as in the case of hermitian random matrix models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fluctuations and Ergodicity of the Form Factor of Quantum Propagators and Random Unitary Matrices

We consider the spectral form factor of random unitary matrices as well as of Floquet matrices of kicked tops, as given by the (squared moduli of) the traces tn = TrF n with the integer “time” n = 0,±1,±2, . . .. For a typical matrix F the time dependence of the form factor |tn| 2 looks erratic; only after a local time average over a suitably large time window ∆n does a systematic time dependen...

متن کامل

Global fluctuation formulas and universal correlations for random matrices and log-gas systems at infinite density

It is shown how the universal correlation function of Brézin and Zee, and Beenakker, for random matrix ensembles of Wigner-Dyson type with density support on a finite interval can be derived using a linear response argument and macroscopic electrostatics. The analogous formula for ensembles of unitary random matrices is derived using the same method, and the corresponding global fluctuation for...

متن کامل

Products and Ratios of Characteristic Polynomials of Random Hermitian Matrices

denotes the average of f with respect to dPa ,N . Recently there has been considerable interest in the averages of products and ratios of the characteristic polynomials DN@m ,H#5P i51 N (m2xi(H)) of random matrices with respect to various ensembles. Such averages are used, in particular, in making predictions about the moments of the Riemann-zeta function @see Refs. 12–14 ~circular ensembles! a...

متن کامل

Correlations for the Circular Dyson Brownian Motion Model with Poisson Initial Conditions

The circular Dyson Brownian motion model refers to the stochastic dynamics of the log-gas on a circle. It also specifies the eigenvalues of certain parameter-dependent ensembles of unitary random matrices. This model is considered with the initial condition that the particles are non-interacting (Poisson statistics). Jack polynomial theory is used to derive a simple exact expression for the den...

متن کامل

Spectral Ergodicity in Deep Learning Architectures via Surrogate Random Matrices

Using random matrix ensembles, mimicking weight matrices from deep and recurrent neural networks, we investigate how increasing connectivity leads to higher accuracy in learning with a related measure on eigenvalue spectra. For this purpose, we quantify spectral ergodicity based on the Thirumalai-Mountain (TM) metric and Kullbach-Leibler (KL) divergence. As a case study, different size circular...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002