Discrete compactness and the approximation of Maxwell's equations in R3
نویسندگان
چکیده
We analyze the use of edge finite element methods to approximate Maxwell’s equations in a bounded cavity. Using the theory of collectively compact operators, we prove h-convergence for the source and eigenvalue problems. This is the first proof of convergence of the eigenvalue problem for general edge elements, and it extends and unifies the theory for both problems. The convergence results are based on the discrete compactness property of edge element due to Kikuchi. We extend the original work of Kikuchi by proving that edge elements of all orders possess this property.
منابع مشابه
A continuous approximation fitting to the discrete distributions using ODE
The probability density functions fitting to the discrete probability functions has always been needed, and very important. This paper is fitting the continuous curves which are probability density functions to the binomial probability functions, negative binomial geometrics, poisson and hypergeometric. The main key in these fittings is the use of the derivative concept and common differential ...
متن کاملDiscrete compactness for a discontinuous Galerkin approximation of Maxwell's system
In this paper we prove the discrete compactness property for a discontinuous Galerkin approximation of Maxwell’s system on quite general tetrahedral meshes. As a consequence, a discrete Friedrichs inequality is obtained and the convergence of the discrete eigenvalues to the continuous ones is deduced using the theory of collectively compact operators. Some numerical experiments confirm the theo...
متن کاملHeat Transfer Characteristics of Porous Radiant Burners Using Discrete-Ordinate Method (S2-Approximation)
This paper describes a theoretical study to investigate the heat transfer characteristics of porous radiant burners. A one dimensional model is used to solve the governing equations for porous medium and gas flow before the premixed flame to the exhaust gas. Combustion in the porous medium is modeled as a spatially dependent heat generation zone. The homogeneous porous media, in addition to its...
متن کاملA meshless discrete Galerkin method for solving the universe evolution differential equations based on the moving least squares approximation
In terms of observational data, there are some problems in the standard Big Bang cosmological model. Inflation era, early accelerated phase of the evolution of the universe, can successfully solve these problems. The inflation epoch can be explained by scalar inflaton field. The evolution of this field is presented by a non-linear differential equation. This equation is considered in FLRW model...
متن کاملMimetic Discretizations for Maxwell's Equations and the Equations of Magnetic Di usion
We have constructed reliable nite diierence methods for approximating the solution to Maxwell's equations and the equations of magnetic eld diiusion using accurate discrete analogs of diierential operators that satisfy the identities and theorems of vector and tensor calculus in discrete form. The numerical approximation does not have spurious modes and mimics many fundamental properties of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 70 شماره
صفحات -
تاریخ انتشار 2001