Experimental determination of the hydrothermal solubility of ReS2 and the Re–ReO2 buffer assemblage and transport of rhenium under supercritical conditions
نویسندگان
چکیده
To understand the aqueous species important for transport of rhenium under supercritical conditions, we conducted a series of solubility experiments on the Re–ReO2 buffer assemblage and ReS2. In these experiments, pH was buffered by the K–feldspar–muscovite–quartz assemblage; fO2 in sulfur-free systems was buffered by the Re–ReO2 assemblage; and fO2 and fS2 in sulfur-containing systems were buffered by the magnetite–pyrite– pyrrhotite assemblage. Our experimental studies indicate that the species ReCl4 0 is dominant at 400 uC in slightly acidic to near-neutral, and chloride-rich (total chloride concentrations ranging from 0.5 to 1.0 M) environments, and ReCl3 z may predominate at 500 uC in a solution with total chloride concentrations ranging from 0.5 to 1.5 M. The results also demonstrate that the solubility of ReS2 is about two orders of magnitude less than that of ReO2. This finding not only suggests that ReS2 (or a ReS2 component in molybdenite) is the solubility-controlling phase in sulfur-containing, reducing environments but also implies that a mixing process involving an oxidized, rhenium-containing solution and a solution with reduced sulfur is one of the most effective mechanisms for deposition of rhenium. In analogy with Re, TcS2 may be the stable Tc-bearing phase in deep geological repositories of radioactive wastes.
منابع مشابه
Solubility Prediction of Drugs in Supercritical Carbon Dioxide Using Artificial Neural Network
The descriptors computed by HyperChem® software were employed to represent the solubility of 40 drug molecules in supercritical carbon dioxide using an artificial neural network with the architecture of 15-4-1. The accuracy of the proposed method was evaluated by computing average of absolute error (AE) of calculated and experimental logarithm of solubilities. The AE (±SD) of data sets was 0.4 ...
متن کاملSolubility Prediction of High Molecular Weight n-Paraffins in Supercritical Carbon Dioxide
Solubility of high molecular weight n-paraffins in supercritical carbon dioxide has been a matter of interest to many researchers. However, not sufficient solubility experimental data are available although the methods by which the experimental data are obtained have many varieties. Utilizing cubic equations of state is an effective method for solubility prediction of n-paraffins in supercr...
متن کاملOptimization of Natural Rhenium Irradiation Time to Produce Compositional Radiopharmaceutical
Introduction: Previously, 186Re and 188Re radioisotopes have been produced through appropriate activities, and each of them has been used for therapeutic applications. The 186Re and 188Re have unique properties, which make them proper for the treatment of tumors in different sizes. The long-range 188Re, is suitabl...
متن کاملSolubility Prediction of Drugs in Supercritical Carbon Dioxide Using Artificial Neural Network
The descriptors computed by HyperChem® software were employed to represent the solubility of 40 drug molecules in supercritical carbon dioxide using an artificial neural network with the architecture of 15-4-1. The accuracy of the proposed method was evaluated by computing average of absolute error (AE) of calculated and experimental logarithm of solubilities. The AE (±SD) of data sets was 0.4 ...
متن کاملSulfur vacancy activated field effect transistors based on ReS2 nanosheets.
Rhenium disulphide (ReS2) is a recently discovered new member of the transition metal dichalcogenides. Most impressively, it exhibits a direct bandgap from bulk to monolayer. However, the growth of ReS2 nanosheets (NSs) still remains a challenge and in turn their applications are unexplored. In this study, we successfully synthesized high-quality ReS2 NSs via chemical vapor deposition. A high-p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Geochemical Transactions
دوره 3 شماره
صفحات -
تاریخ انتشار 2002