A method for photon beam Monte Carlo multileaf collimator particle transport.
نویسندگان
چکیده
Monte Carlo (MC) algorithms are recognized as the most accurate methodology for patient dose assessment. For intensity-modulated radiation therapy (IMRT) delivered with dynamic multileaf collimators (DMLCs), accurate dose calculation, even with MC, is challenging. Accurate IMRT MC dose calculations require inclusion of the moving MLC in the MC simulation. Due to its complex geometry, full transport through the MLC can be time consuming. The aim of this work was to develop an MLC model for photon beam MC IMRT dose computations. The basis of the MC MLC model is that the complex MLC geometry can be separated into simple geometric regions, each of which readily lends itself to simplified radiation transport. For photons, only attenuation and first Compton scatter interactions are considered. The amount of attenuation material an individual particle encounters while traversing the entire MLC is determined by adding the individual amounts from each of the simplified geometric regions. Compton scatter is sampled based upon the total thickness traversed. Pair production and electron interactions (scattering and bremsstrahlung) within the MLC are ignored. The MLC model was tested for 6 MV and 18 MV photon beams by comparing it with measurements and MC simulations that incorporate the full physics and geometry for fields blocked by the MLC and with measurements for fields with the maximum possible tongue-and-groove and tongue-or-groove effects, for static test cases and for sliding windows of various widths. The MLC model predicts the field size dependence of the MLC leakage radiation within 0.1% of the open-field dose. The entrance dose and beam hardening behind a closed MLC are predicted within +/- 1% or 1 mm. Dose undulations due to differences in inter- and intra-leaf leakage are also correctly predicted. The MC MLC model predicts leaf-edge tongue-and-groove dose effect within +/- 1% or 1 mm for 95% of the points compared at 6 MV and 88% of the points compared at 18 MV. The dose through a static leaf tip is also predicted generally within +/- 1% or 1 mm. Tests with sliding windows of various widths confirm the accuracy of the MLC model for dynamic delivery and indicate that accounting for a slight leaf position error (0.008 cm for our MLC) will improve the accuracy of the model. The MLC model developed is applicable to both dynamic MLC and segmental MLC IMRT beam delivery and will be useful for patient IMRT dose calculations, pre-treatment verification of IMRT delivery and IMRT portal dose transmission dosimetry.
منابع مشابه
Monte Carlo Study of Unflattened Photon Beams Shaped by Multileaf Collimator
Introduction: This study investigates basic dosimetric properties of unflattened 6 MV photon beam shaped by multileaf collimator and compares them with those of flattened beams.Materials and Methods: Monte Carlo simulation model using BEAM code was developed for a 6MV photon beam based on Varian Clinic 600 unique performance linac operated with and without a flattening filter in beam line. Dosi...
متن کاملA Monte Carlo Simulation of Photon Beam Generated by a Linear Accelerator
ntroduction: Monte Carlo simulation is the most accurate method of simulating radiation transport and predicting doses at different points of interest in radiotherapy. A great advantage of the Monte Carlo method compared to the deterministic methods is the ability to deal accurately with any complex geometry. Its disadvantage is the extremely long computing time r...
متن کاملMonte Carlo Dose Algorithm
Conventional dose calculation algorithms, such as Pencil Beam are proven effective for tumors located in homogeneous regions with similar tissue consistency such as the brain. However, these algorithms tend to overestimate the dose distribution in extracranial regions such as in the lung and head and neck regions where large inhomogeneities exist. Due to the inconsistencies seen in current calc...
متن کاملA comparative Monte Carlo study on 6MV photon beam characteristics of Varian 21EX and Elekta SL-25 linacs
Background: Monte Carlo method (MC) has played an important role in design and optimization of medical linacs head and beam modeling. The purpose of this study was to compare photon beam features of two commercial linacs, Varian 21EX and Elekta SL-25 using MCNP4C MC code. Materials and Methods: The 6MV photon beams of Varian 21EX and Elekta Sl-25 linacs were simulated based on manufacturers pro...
متن کاملAn assessment of the Photon Contamination due to Bremsstrahlung Radiation in the Electron Beams of a NEPTUN 10PC Linac using a Monte Carlo Method
Introduction: In clinical electron beams, most of bremsstrahlung radiation is produced by various linac head structures. This bremsstrahlung radiation dose is influenced by the geometry and construction of every component of the linac treatment head structures. Thus, it can be expected that the amount of the contaminated photon dose due to bremsstrahlung radiation varies among different linacs,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physics in medicine and biology
دوره 47 17 شماره
صفحات -
تاریخ انتشار 2002