The Gravitational Hamiltonian , Action , Entropy and Surface Terms

نویسنده

  • Gary T. Horowitz
چکیده

We give a general derivation of the gravitational hamiltonian starting from the Einstein-Hilbert action, keeping track of all surface terms. The surface term that arises in the hamiltonian can be taken as the definition of the ‘total energy’, even for spacetimes that are not asymptotically flat. (In the asymptotically flat case, it agrees with the usual ADM energy.) We also discuss the relation between the euclidean action and the hamiltonian when there are horizons of infinite area (e.g. acceleration horizons) as well as the usual finite area black hole horizons. Acceleration horizons seem to be more analogous to extreme than nonextreme black holes, since we find evidence that their horizon area is not related to the total entropy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : h ep - t h / 98 08 08 5 v 2 2 5 A ug 1 99 8 Gravitational Entropy and Global Structure

The underlying reason for the existence of gravitational entropy is traced to the impossibility of foliating topologically non-trivial Euclidean spacetimes with a time function to give a unitary Hamiltonian evolution. In d dimensions the entropy can be expressed in terms of the d − 2 obstructions to foliation, bolts and Misner strings, by a universal formula. We illustrate with a number of exam...

متن کامل

/ 98 08 08 5 v 1 1 4 A ug 1 99 8 Gravitational Entropy and Global Structure

The underlying reason for the existence of gravitational entropy is traced to the impossibility of foliating topologically non-trivial Euclidean spacetimes with a time function to give a unitary Hamiltonian evolution. In d dimensions the entropy can be expressed in terms of the d − 2 obstructions to foliation, bolts and Misner strings, by a universal formula. We illustrate with a number of exam...

متن کامل

Surface terms and the Gauss-Bonnet Hamiltonian

We derive the gravitational Hamiltonian starting from the Gauss-Bonnet action, keeping track of all surface terms. This is done using the language of orthonormal frames and forms to keep things as tidy as possible. The surface terms in the Hamiltonian give a remarkably simple expression for the total energy of a spacetime. This expression is consistent with energy expressions found in hep-th/02...

متن کامل

Gravitational Statistical Mechanics: a Model

Using the quantum Hamiltonian for a gravitational system with boundary, we find the partition function and derive the resulting thermody-namics. The Hamiltonian, and starting point for this calculation, is the boundary term required by functional differentiability of the action for Lorentzian general relativity. In this model, states of quantum geometry are represented by spin networks. We show...

متن کامل

A Hamiltonian Formulation of Nonsymmetric Gravitational Theories

The dynamics of a class of nonsymmetric gravitational theories is presented in Hamiltonian form. The derivation begins with the first-order action, treating the generalized connection coefficients as the canonical coordinates and the densitised components of the inverse of the fundamental tensor as conjugate momenta. The phase space of the symmetric sector is enlarged compared to the convention...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996