Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP
نویسندگان
چکیده
Weyl semimetals (WSMs) are topological quantum states wherein the electronic bands disperse linearly around pairs of nodes with fixed chirality, the Weyl points. In WSMs, nonorthogonal electric and magnetic fields induce an exotic phenomenon known as the chiral anomaly, resulting in an unconventional negative longitudinal magnetoresistance, the chiral-magnetic effect. However, it remains an open question to which extent this effect survives when chirality is not well-defined. Here, we establish the detailed Fermi-surface topology of the recently identified WSM TaP via combined angle-resolved quantum-oscillation spectra and band-structure calculations. The Fermi surface forms banana-shaped electron and hole pockets surrounding pairs of Weyl points. Although this means that chirality is ill-defined in TaP, we observe a large negative longitudinal magnetoresistance. We show that the magnetoresistance can be affected by a magnetic field-induced inhomogeneous current distribution inside the sample.
منابع مشابه
π Berry phase and Zeeman splitting of Weyl semimetal TaP
The recent breakthrough in the discovery of Weyl fermions in monopnictide semimetals provides opportunities to explore the exotic properties of relativistic fermions in condensed matter. The chiral anomaly-induced negative magnetoresistance and π Berry phase are two fundamental transport properties associated with the topological characteristics of Weyl semimetals. Since monopnictide semimetals...
متن کاملEvidence for trivial Berry phase and absence of chiral anomaly in semimetal NbP
The discovery of Weyl semimetals (WSM) has brought forth the condensed matter realization of Weyl fermions, which were previously theorized as low energy excitations in high energy particle physics. Recently, transition metal mono-pnictides are under intense investigation for understanding properties of inversion-symmetry broken Weyl semimetals. Non-trivial Berry phase and chirality are importa...
متن کاملAnomalous electronic structure and magnetoresistance in TaAs2
The change in resistance of a material in a magnetic field reflects its electronic state. In metals with weakly- or non-interacting electrons, the resistance typically increases upon the application of a magnetic field. In contrast, negative magnetoresistance may appear under some circumstances, e.g., in metals with anisotropic Fermi surfaces or with spin-disorder scattering and semimetals with...
متن کاملGiant negative magnetoresistance induced by the chiral anomaly in individual Cd3As2 nanowires
Dirac electronic materials beyond graphene and topological insulators have recently attracted considerable attention. Cd3As2 is a Dirac semimetal with linear dispersion along all three momentum directions and can be viewed as a three-dimensional analogue of graphene. By breaking of either time-reversal symmetry or spatial inversion symmetry, the Dirac semimetal is believed to transform into a W...
متن کاملThe unknowns of cognitive enhancement Can science and policy catch up with practice ?
23 OCTOBER 2015 • VOL 350 ISSUE 6259 379 crystal momentum space. This, however, is not important, as a similar effect should be observed in Weyl semimetals, where opposite-chirality fermions exist at distinct points in momentum space. The way that the chiral anomaly manifests in Na 3 Bi is through magnetoresistance (a dependence of the electrical resistance of the material on an applied magneti...
متن کامل