Soil C and N models that integrate microbial diversity

نویسندگان

  • Benjamin P Louis
  • Pierre-Alain Maron
  • Valérie Viaud
  • Philippe Leterme
  • Safya Menasseri-Aubry
چکیده

Industrial agriculture is yearly responsible for the loss of 55-100 Pg of historical soil carbon and 9.9 Tg of reactive nitrogen worldwide. Therefore, management practices should be adapted to preserve ecological processes and reduce inputs and environmental impacts. In particular, the management of soil organic matter (SOM) is a key factor influencing C and N cycles. Soil microorganisms play a central role in SOM dynamics. For instance, microbial diversity may explain up to 77 % of carbon mineralisation activities. However, soil microbial diversity is actually rarely taken into account in models of C and N dynamics. Here, we review the influence of microbial diversity on C and N dynamics, and the integration of microbial diversity in soil C and N models. We found that a gain of microbial richness and evenness enhances soil C and N dynamics on the average, though the improvement of C and N dynamics depends on the composition of microbial community. We reviewed 50 models integrating soil microbial diversity. More than 90 % of models integrate microbial diversity with discrete compartments representing conceptual functional groups (64 %) or identified taxonomic groups interacting in a food web (28 %). Half of the models have not been tested against an empirical dataset while the other half mainly consider fixed parameters. This is due to the difficulty to link taxonomic and functional diversity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microbial Diversity Indexes Can Explain Soil Carbon Dynamics as a Function of Carbon Source

Mathematical models do not explicitly represent the influence of soil microbial diversity on soil organic carbon (SOC) dynamics despite recent evidence of relationships between them. The objective of the present study was to statistically investigate relationships between bacterial and fungal diversity indexes (richness, evenness, Shannon index, inverse Simpson index) and decomposition of diffe...

متن کامل

Explicitly representing soil microbial processes in Earth system models

Microbes influence soil organic matter decomposition and the long-term stabilization of carbon (C) in soils. We contend that by revising the representation of microbial processes and their interactions with the physicochemical soil environment, Earth system models (ESMs) will make more realistic global C cycle projections. Explicit representation of microbial processes presents considerable cha...

متن کامل

Effects of Fertilization and Clipping on Carbon, Nitrogen Storage, and Soil Microbial Activity in a Natural Grassland in Southern China

Grassland managements can affect carbon (C) and nitrogen (N) storage in grassland ecosystems with consequent feedbacks to climate change. We investigated the impacts of compound fertilization and clipping on grass biomass, plant and soil (0-20 cm depth) C, N storage, plant and soil C: N ratios, soil microbial activity and diversity, and C, N sequestration rates in grassland in situ in the Natio...

متن کامل

Plant diversity effects on soil microbial functions and enzymes are stronger than warming in a grassland experiment.

Anthropogenic changes in biodiversity and atmospheric temperature significantly influence ecosystem processes. However, little is known about potential interactive effects of plant diversity and warming on essential ecosystem properties, such as soil microbial functions and element cycling. We studied the effects of orthogonal manipulations of plant diversity (one, four, and 16 species) and war...

متن کامل

Soil Microbial Biomass Carbon and Nitrogen in Himalayan Rangeland of Eastern Nepal: A Comparison between Grazed and Non-grazed Rangelands

Soil microbial biomass plays an important role in nutrient transformation in terrestrial ecosystems. Microbial biomass is also an early indicator of changes in total soil organic carbon. Thus, the main objective of this study was to identify and quantify the present status of soil microbial biomass carbon and nitrogen with various management practices in Himalayan rangeland. To meet the aforeme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2016