The MST1 and hMOB1 Tumor Suppressors Control Human Centrosome Duplication by Regulating NDR Kinase Phosphorylation

نویسندگان

  • Alexander Hergovich
  • Reto S. Kohler
  • Debora Schmitz
  • Anton Vichalkovski
  • Hauke Cornils
  • Brian A. Hemmings
چکیده

BACKGROUND Human MST/hSAV/LATS/hMOB tumor suppressor cascades are regulators of cell death and proliferation; however, little is known about other functions of MST/hMOB signaling. Mob1p, one of two MOB proteins in yeast, appears to play a role in spindle pole body duplication (the equivalent of mammalian centrosome duplication). We therefore investigated the role of human MOB proteins in centrosome duplication. We also addressed the regulation of human centrosome duplication by mammalian serine/threonine Ste20-like (MST) kinases, considering that MOB proteins can function together with Ste20-like kinases in eukaryotes. RESULTS By studying the six human MOB proteins and five MST kinases, we found that MST1/hMOB1 signaling controls centrosome duplication. Overexpression of hMOB1 caused centrosome overduplication, whereas RNAi depletion of hMOB1 or MST1 impaired centriole duplication. Significantly, we delineated an hMOB1/MST1/NDR1 signaling pathway regulating centrosome duplication. More specifically, analysis of shRNA-resistant hMOB1 and NDR1 mutants revealed that a functional NDR/hMOB1 complex is critical for MST1 to phosphorylate NDR on the hydrophobic motif that in turn is required for human centrosome duplication. Furthermore, shRNA-resistant MST1 variants revealed that MST1 kinase activity is crucial for centrosome duplication whereas MST1 binding to the hSAV and RASSF1A tumor suppressor proteins is dispensable. Finally, by studying the PLK4/HsSAS-6/CP110 centriole assembly machinery, we also observed that normal daughter centriole formation depends on intact MST1/hMOB1/NDR signaling, although HsSAS-6 centriolar localization is not affected. CONCLUSIONS Our observations propose a novel pathway in control of human centriole duplication after recruitment of HsSAS-6 to centrioles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Centrosome-associated NDR kinase regulates centrosome duplication.

Human NDR kinases are upregulated in some cancer types, yet their functions still remain undefined. Here, we report the first known function of a mammalian NDR kinase by demonstrating that human NDR directly contributes to centrosome duplication. A subpopulation of endogenous NDR localizes to centrosomes in a cell-cycle-dependent manner. Overexpression of NDR resulted in centrosome overduplicat...

متن کامل

NDR Kinase Is Activated by RASSF1A/MST1 in Response to Fas Receptor Stimulation and Promotes Apoptosis

Human NDR1 and 2 (NDR1/2) are serine-threonine protein kinases in a subgroup of the AGC kinase family. The mechanisms of physiological NDR1/2 activation and their function remain largely unknown. Here we report that Fas and TNF-alpha receptor stimulation activates human NDR1/2 by promoting phosphorylation at the hydrophobic motif (Thr444/442). Moreover, NDR1/2 are essential for Fas receptor-ind...

متن کامل

Rassf Proteins as Modulators of Mst1 Kinase Activity

Rassf1A/5 tumor suppressors serve as adaptor proteins possessing a modular architecture with the C-terminal consisting of a coiled-coil SARAH (Salvador-Rassf-Hippo) domain and the central portion being composed of Ras associated (RA) domain. Here, we investigate the effect of Rassf effectors on Mst1 function by mapping the interaction of various domains of Rassf1A/5 and Mst1 kinase using surfac...

متن کامل

MICAL-1 is a negative regulator of MST-NDR kinase signaling and apoptosis.

MICALs (molecules interacting with CasL) are atypical multidomain flavoenzymes with diverse cellular functions. The molecular pathways employed by MICAL proteins to exert their cellular effects remain largely uncharacterized. Via an unbiased proteomics approach, we identify MICAL-1 as a binding partner of NDR (nuclear Dbf2-related) kinases. NDR1/2 kinases are known to mediate apoptosis downstre...

متن کامل

Centrosomes and tumour suppressors.

Centrosomes are microtubule organising centres that act as spindle poles during mitosis. Recent work implicates centrosomes in many other processes, and shows that centrosome defects can cause genetic instability. Many regulators of mammalian centrosome function were predicted from studies of model systems. Surprisingly, some well-known tumour suppressors have recently been found at centrosomes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2009