Preliminary study of clinical application on IMRT three‐dimensional dose verification‐based EPID system
نویسندگان
چکیده
The three-dimensional dose (3D) distribution of intensity-modulated radiation therapy (IMRT) was verified based on electronic portal imaging devices (EPIDs), and the results were analyzed. Thirty IMRT plans of different lesions were selected for 3D EPID-based dose verification. The gamma passing rates of the 3D dose verification-based EPID system (Edose, Version 3.01, Raydose, Guangdong, China) and Delta4 measurements were then compared with treatment planning system (TPS) calculations using global gamma criteria of 5%/3 mm, 3%/3 mm, and 2%/2 mm. Furthermore, the dose-volume histograms (DVHs) for planning target volumes (PTVs) as well as organs at risk (OARs) were analyzed using Edose. For dose verification of the 30 treatment plans, the average gamma passing rates of Edose reconstructions under the gamma criteria of 5%/3 mm, 3%/3 mm, and 2%/2 mm were (98.58 ± 0.93)%, (95.67 ± 1.97)%, and (83.13 ± 4.53)%, respectively, whereas the Delta4 measurement results were (99.14% ± 1.16)%, (95.81% ± 2.88)%, and (84.74% ± 7.00)%, respectively. The dose differences between Edose reconstructions and TPS calculations were within 3% for D95% , D98% , and Dmean in each PTV, with the exception that the D98% of the PTV-clinical target volume (CTV) in esophageal carcinoma cases was (3.21 ± 2.33)%. However, the larger dose deviations in OARs (such as lens, parotid gland, optic nerve, and spinal cord) can be determined based on DVHs. The difference was particularly obvious for OARs with small volumes; for example, the maximum dose deviation for the lens reached (-6.12 ± 5.28)%. A comparison of the results obtained with Edose and Delta4 indicated that the Edose system could be applied for 3D pretreatment dose verification of IMRT. This system could also be utilized to evaluate the gamma passing rate of each treatment plan. Furthermore, the detailed dose distributions of PTVs and OARs could be indicated based on DVHs, providing additional reliable data for quality assurance in a clinic setting.
منابع مشابه
EPID in vivo Dosimetry
Introduction: The most modern radiotherapy devices are equipped with an Electronic Portal Imaging Device (EPID) system which is located on opposite side of the machine’s head. EPID system is often used to setting up the position verification during or between radiotherapy sessions. Material and Methods: Various types of dosimeters have been used to setting up ...
متن کاملEvaluation of a fast method of EPID-based dosimetry for IMRT and Comparison with 3D EPID-based dosimetry system using conventional two- and three-dimensional detectors for VMAT
Introduction: Electronic portal imaging devices (EPIDs) could potentially be useful for intensity-modulated radiation therapy (IMRT) and VMAT QA. The data density, high resolution, large active area, and efficiency of the MV EPID make it an attractive option. However, EPIDs were designed as imaging devices, not dosimeters, and as a result they do not inherently measure dose in ...
متن کاملThree-dimensional IMRT verification with a flat-panel EPID.
A three-dimensional (3D) intensity-modulated radiotherapy (IMRT) pretreatment verification procedure has been developed based on the measurement of two-dimensional (2D) primary fluence profiles using an amorphous silicon flat-panel electronic portal imaging device (EPID). As described in our previous work, fluence profiles are extracted from EPID images by deconvolution with kernels that repres...
متن کاملExperimental verification of a 3D in vivo dose monitoring system based on EPID
Purpose To evaluate the Edose system, a novel three-dimensional (3D) in vivo dose monitoring system based on electronic portal imaging device (EPID), prior to clinical application, we analyzed the preliminary clinical data using Edose system in patients receiving intensity-modulated radiation therapy (IMRT). Materials and methods After the physical modeling, the measured results from the Edos...
متن کاملAssessment of a 2D EPID-based Dosimetry Algorithm for Pre-treatment and In-vivo Midplane Dose Verification
Introduction: The use of electronic portal imaging devices (EPIDs) is a method for the dosimetric verification of radiotherapy plans both pretreatment and in-vivo. The aim of this study was to test a 2D EPID-based dosimetry algorithm for dose verification of some plans inside a homogenous and anthropomorphic phantom and in-vivo, as well. Materials and Methods: </strong...
متن کامل