Bernays-Schönfinkel-Ramsey with Simple Bounds is NEXPTIME-complete

نویسندگان

  • Marco Voigt
  • Christoph Weidenbach
چکیده

Linear arithmetic extended with free predicate symbols is undecidable, in general. We show that the restriction of linear arithmetic inequations to simple bounds extended with the Bernays-Schönfinkel-Ramsey free first-order fragment is decidable and NEXPTIME-complete. The result is almost tight because the Bernays-Schönfinkel-Ramsey fragment is undecidable in combination with linear difference inequations, simple additive inequations, quotient inequations and multiplicative inequations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decidable Fragments of Logics Based on Team Semantics

We study the complexity of predicate logics based on team semantics. We show that the satisfiability problems of two-variable independence logic and inclusion logic are both NEXPTIME-complete. Furthermore, we show that the validity problem of two-variable dependence logic is undecidable, thereby solving an open problem from the team semantics literature. We also briefly analyse the complexity o...

متن کامل

Toward a More Complete Alloy

Many model-finding tools, such as Alloy, charge users with providing bounds on the sizes of models. It would be preferable to automatically compute sufficient upper-bounds whenever possible. The Bernays-Schönfinkel-Ramsey fragment of first-order logic can relieve users of this burden in some cases: its sentences are satisfiable iff they are satisfied in a finite model, whose size is computable ...

متن کامل

On the Complexity of the Bernays-Schönfinkel Class with Datalog

Bernays-Schönfinkel class with Datalog is a 2-variable fragment of the Bernays-Schönfinkel class extended with least fixed points expressible by certain monadic Datalog programs. It was used in a bounded model checking procedure for programs manipulating dynamically allocated pointer structures, where the bounded model checking problem was reduced to the satisfiability of formulas in this logic...

متن کامل

Reasoning in the Bernays-Schönfinkel-Ramsey Fragment of Separation Logic

Separation Logic (SL) is a well-known assertion language used in Hoare-style modular proof systems for programs with dynamically allocated data structures. In this paper we investigate the fragment of first-order SL restricted to the Bernays-Schönfinkel-Ramsey quantifier prefix ∃∗∀∗, where the quantified variables range over the set of memory locations. When this set is uninterpreted (has no as...

متن کامل

On the Combination of the Bernays-Schönfinkel-Ramsey Fragment with Simple Linear Integer Arithmetic

In general, first-order predicate logic extended with linear integer arithmetic is undecidable. We show that the Bernays–Schönfinkel–Ramsey fragment (∃∗∀∗-sentences) extended with a restricted form of linear integer arithmetic is decidable via finite ground instantiation. The identified ground instances can be employed to restrict the search space of existing automated reasoning procedures cons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1501.07209  شماره 

صفحات  -

تاریخ انتشار 2015