Aromaticity decreases single-molecule junction conductance.
نویسندگان
چکیده
We have measured the conductance of single-molecule junctions created with three different molecular wires using the scanning tunneling microscope-based break-junction technique. Each wire contains one of three different cyclic five-membered rings: cyclopentadiene, furan, or thiophene. We find that the single-molecule conductance of these three wires correlates negatively with the resonance energy of the five-membered ring; the nonaromatic cyclopentadiene derivative has the highest conductance, while the most aromatic of this series, thiophene, has the lowest. Furthermore, we show for another wire structure that the conductance of furan-based wires is consistently higher than for analogous thiophene systems, indicating that the negative correlation between conductance and aromaticity is robust. The best conductance would be for a quinoid structure that diminishes aromaticity. The energy penalty for partly adopting the quinoid structure is less with compounds having lower initial aromatic stabilization. An additional effect may reflect the lower HOMOs of aromatic compounds.
منابع مشابه
Single-molecule junction conductance through diaminoacenes.
The study of electron transport through single molecules is essential to the development of molecular electronics. Indeed, trends in electronic conductance through organic nanowires have emerged with the increasing reliability of electron transport measurements at the single-molecule level. Experimental and theoretical work has shown that tunneling distance, HOMOLUMO gap and molecular conformat...
متن کاملA reversible single-molecule switch based on activated antiaromaticity
Single-molecule electronic devices provide researchers with an unprecedented ability to relate novel physical phenomena to molecular chemical structures. Typically, conjugated aromatic molecular backbones are relied upon to create electronic devices, where the aromaticity of the building blocks is used to enhance conductivity. We capitalize on the classical physical organic chemistry concept of...
متن کاملخواص ترابری الکترون در سیستم CNT/trans-PA/CNT
Using a tight-binding model and a tranfer-matrix technique, we numerically investigate the effects of the coupling strength, and the length of the molecule on the electronic transmission through a CNT/(single) molecule/CNT system. With trans-polyacetylene (trans-PA) as the molecule sandwiched between two semi-infinite carbon nanotube(CNT), we rely on Landauer formalism as the basis for studyi...
متن کاملمحاسبه رسانندگی و زمان مشخصه تونلزنی الکترون از پیوندگاه فلز – مولکول (پلی استیلن) در یک سیم مولکولی
In this paper, on the basis of tight-binding model and a generalized Green- function method as well as Lanczos algorithm procedure, the effects of the metal-molecule coupling(MMC) strength on the electronic transmission through a metal-single molecule-metal(MMM) system is investigated. Using the Landauer formalism we study some of the significant conductance properties of this system as a mol...
متن کاملEffect of the environment on the electrical conductance of the single benzene-1,4-diamine molecule junction
We investigated the effect of the environment on the electrical conductance of a single benzene-1,4-diamine (BDA) molecule bridging Au electrodes, using the scanning tunneling microscope (STM). The conductance of the single BDA molecule junction decreased upon a change in the environment from tetraglyme, to mesitylene, to water, and finally to N(2) gas, while the spread in the conductance value...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 136 3 شماره
صفحات -
تاریخ انتشار 2014