Regularity of Mild Solutions to Fractional Cauchy Problems with Riemann-liouville Fractional Derivative
نویسندگان
چکیده
As an extension of the fact that a sectorial operator can determine an analytic semigroup, we first show that a sectorial operator can determine a real analytic α-order fractional resolvent which is defined in terms of MittagLeffler function and the curve integral. Then we give some properties of real analytic α-order fractional resolvent. Finally, based on these properties, we discuss the regularity of mild solution of a class of fractional abstract Cauchy problems with Riemann-Liouville fractional derivative.
منابع مشابه
New operational matrix for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative
In this paper, we apply spectral method based on the Bernstein polynomials for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative. In the first step, we introduce the dual basis and operational matrix of product based on the Bernstein basis. Then, we get the Bernstein operational matrix for the Jumarie’s modified Riemann-Liouville fractio...
متن کاملA new fractional sub-equation method for solving the space-time fractional differential equations in mathematical physics
In this paper, a new fractional sub-equation method is proposed for finding exact solutions of fractional partial differential equations (FPDEs) in the sense of modified Riemann-Liouville derivative. With the aid of symbolic computation, we choose the space-time fractional Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZKBBM) equation in mathematical physics with a source to illustrate the validity a...
متن کاملA Neural Network Method Based on Mittag-Leffler Function for Solving a Class of Fractional Optimal Control Problems
In this paper, a computational intelligence method is used for the solution of fractional optimal control problems (FOCP)'s with equality and inequality constraints. According to the Ponteryagin minimum principle (PMP) for FOCP with fractional derivative in the Riemann- Liouville sense and by constructing a suitable error function, we define an unconstrained minimization problem. In the optimiz...
متن کاملExistence of mild solution for evolution equation with Hilfer fractional derivative
The paper is concerned with existence of mild solution of evolution equation with Hilfer fractional derivative which generalized the famous Riemann–Liouville fractional derivative. By noncompact measure method, we obtain some sufficient conditions to ensure the existence of mild solution. Our results are new and more general to known results. Nowadays, fractional calculus receives increasing at...
متن کاملNumerical solution for boundary value problem of fractional order with approximate Integral and derivative
Approximating the solution of differential equations of fractional order is necessary because fractional differential equations have extensively been used in physics, chemistry as well as engineering fields. In this paper with central difference approximation and Newton Cots integration formula, we have found approximate solution for a class of boundary value problems of fractional order. Three...
متن کامل