Longest Hamiltonian in Nodd-Gon

نویسنده

  • Blanca I. Niel
چکیده

We single out the polygonal paths of order that solve each of the 1 odd n  2 odd n       different longest non-cyclic Euclidean Hamiltonian path problems in      iπ e 1 , odd n n n ij n n K d     networks by an arithmetic algorithm. As by product, the procedure determines the winding index of cyclic Hamiltonian polygonals on the vertices of a regular polygon.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantization of Bending Deformations of Polygons In E3, Hypergeometric Integrals and the Gassner Representation

The Hamiltonian potentials of the bending deformations of n-gons in E3 studied in [KM] and [Kly] give rise to a Hamiltonian action of the Malcev Lie algebra Pn of the pure braid group Pn on the moduli space Mr of n-gon linkages with the side-lengths r = (r1, . . . , rn) in E3. If e ∈ Mr is a singular point we may linearize the vector fields inPn at e. This linearization yields a flat connection...

متن کامل

Quantization of bending deformations of polygons in E, hypergeometric integrals and the Gassner representation

The Hamiltonian potentials of the bending deformations of n-gons in E3 studied in [KM] and [Kly] give rise to a Hamiltonian action of the Malcev Lie algebra Pn of the pure braid group Pn on the moduli space Mr of n-gon linkages with the side-lengths r = (r1, ..., rn) in E 3. If e ∈ Mr is a singular point we may linearize the vector fields in Pn at e. This linearization yields a flat connection ...

متن کامل

Quantization of bending deformations of polygons in E 3 , hypergeometric integrals and the

The Hamiltonian potentials of the bending deformations of n-gons in E 3 studied in KM] and Kly] give rise to a Hamiltonian action of the Malcev Lie algebra P n of the pure braid group P n on the moduli space M r of n-gon linkages with the side-lengths r = (r 1 ; :::; r n) in E 3. If e 2 M r is a singular point we may linearize the vector elds in P n at e. This linearization yields a at connecti...

متن کامل

The NPO-Completeness of the Longest Hamiltonian Cycle Problem

In this paper, the longest Hamiltonian cycle problem and the longest Hamiltonian path problem are proved to be NPO-complete. @ 1998 Published by Elsevier Science B.V.

متن کامل

On Computing Longest Paths in Small Graph Classes

The longest path problem is to find a longest path in a given graph. While the graph classes in which the Hamiltonian path problem can be solved efficiently are widely investigated, few graph classes are known to be solved efficiently for the longest path problem. For a tree, a simple linear time algorithm for the longest path problem is known. We first generalize the algorithm, and show that t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013