Characterization of the EBV-Induced Persistent DNA Damage Response
نویسندگان
چکیده
Epstein-Barr virus (EBV) is an oncogenic herpesvirus that is ubiquitous in the human population. Early after EBV infection in vitro, primary human B cells undergo a transient period of hyper-proliferation, which results in replicative stress and DNA damage, activation of the DNA damage response (DDR) pathway and, ultimately, senescence. In this study, we investigated DDR-mediated senescence in early arrested EBV-infected B cells and characterized the establishment of persistent DNA damage foci. We found that arrested EBV-infected B cells exhibited an increase in promyelocytic leukemia nuclear bodies (PML NBs), which predominantly localized to markers of DNA damage, as well as telomeric DNA. Furthermore, arrested EBV-infected B cells exhibited an increase in the presence of telomere dysfunction-induced foci. Importantly, we found that increasing human telomerase reverse transcriptase (hTERT) expression with danazol, a drug used to treat telomere diseases, permitted early EBV-infected B cells to overcome cellular senescence and enhanced transformation. Finally, we report that EBV-infected B cells undergoing hyper-proliferation are more sensitive than lymphoblastoid cell lines (LCLs) to inhibition of Bloom syndrome-associated helicase, which facilitates telomere replication. Together, our results describe the composition of persistent DNA damage foci in the early stages of EBV infection and define key regulators of this barrier to long-term outgrowth.
منابع مشابه
Analysis of Epstein Barr Virus Genome in Serum and Ocular Samples of Patients with Inflammatory Eye Disease Using PCR Method
Background and Aims: Epstein-Barr virus (EBV) infection is very common in the population. Virus belongs to the family Herpesviridae, whose representatives are characterized by the ability to cause the human body latent persistent infections. The goal of this study was to assess EBV infection frequency using PCR method in samples from inflammatory eye disease, in comparison with EBV presence in ...
متن کاملDNA Damage Signaling Is Induced in the Absence of Epstein—Barr Virus (EBV) Lytic DNA Replication and in Response to Expression of ZEBRA
Epstein Barr virus (EBV), like other oncogenic viruses, modulates the activity of cellular DNA damage responses (DDR) during its life cycle. Our aim was to characterize the role of early lytic proteins and viral lytic DNA replication in activation of DNA damage signaling during the EBV lytic cycle. Our data challenge the prevalent hypothesis that activation of DDR pathways during the EBV lytic ...
متن کاملE2F1 Mediated Apoptosis Induced by the DNA Damage Response Is Blocked by EBV Nuclear Antigen 3C in Lymphoblastoid Cells
EBV latent antigen EBNA3C is indispensible for in vitro B-cell immortalization resulting in continuously proliferating lymphoblastoid cell lines (LCLs). EBNA3C was previously shown to target pRb for ubiquitin-proteasome mediated degradation, which facilitates G1 to S transition controlled by the major transcriptional activator E2F1. E2F1 also plays a pivotal role in regulating DNA damage induce...
متن کاملRadioadaptive response in peripheral blood leukocytes of occupationally exposed medical staff with investigation of DNA damage by the use of neutral comet assay
Background: ˝Radioadaptive Response˝ is well-documented phenomenon appeared in low dose ionizing radiation received in vitro and in vivo. Occupational exposure has always been a great concern for radiation workers therefore this study was performed to study radioadaptive response in terms of residual DNA double strand breaks as an endpoint in peripheral blood leukocytes of occupationally expose...
متن کاملStudies on electron beam induced DNA damage and repair kinetics in lymphocytes by alkaline comet assay
Background: Exposure to ionizing radiation is known to induce oxidative stress followed by damage to critical biomolecules like lipids, proteins and DNA through radiolysis of cellular water. Since radiation has been widely used as an important tool in therapy of cancer, the detailed investigation regarding the DNA damage and repair kinetics would help to predict the radiation sensitivity of cel...
متن کامل