Analysis of intracellular trafficking and interactions of cytoplasmic HIV-1 Rev mutants in living cells.

نویسندگان

  • R H Stauber
  • E Afonina
  • S Gulnik
  • J Erickson
  • G N Pavlakis
چکیده

The HIV-1 Rev protein is an essential nuclear regulatory viral protein. Rev mutants that are able to block wild-type (WT) Rev activity in trans have been reported and used in antiviral approaches. Not only nuclear but also cytoplasmic Rev mutants were described and suspected to be transdominant by retaining WT Rev in the cytoplasm. To investigate their potential for cytoplasmic retention, we studied the localization, trafficking, and interactions of cytoplasmic Rev mutants containing mutations in the N-terminal multifunctional domain. Using a novel dual-color autofluorescent protein-tagging system, we found that coexpression of the nucleolar blue-tagged WT Rev protein together with green-labeled cytoplasmic Rev mutants did not result in the retention of WT Rev in the cytoplasm but, on the contrary, in colocalization of the mutants to the nucleolus. A combination of mutations abolished the interaction with WT Rev, defining two domains important for Rev protein interaction. The identified domains were also essential for specific Rev responsive element (RRE) RNA binding and nuclear retention. Inactivation of the nuclear export signal shifted the steady-state distribution of the mutants from the cytoplasm to the nucleus, indicating their capability for nucleo-cytoplasmic shuttling. The cytoplasmic mutants were not transdominant compared to the nuclear mutant RevM10BL. These results emphasize that efficient oligomerization with WT Rev combined with RRE-specific RNA binding are prerequisites for effective transdominance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differences in growth promotion, drug response and intracellular protein trafficking of FLT3 mutants

Objective(s): Mutant forms FMS-like tyrosine kinase-3 (FLT3), are reported in 25% of childhood acute lymphoid leukemia (ALL) and 30% of acute myeloid leukemia (AML) patients. In this study, drug response, growth promoting, and protein trafficking of FLT3 wild-type was compared with two active mutants (Internal Tandem Duplication (ITD)) and D835Y. Materials and Methods:FLT3 was expressed on fact...

متن کامل

Nucleocytoplasmic transport in human astrocytes: decreased nuclear uptake of the HIV Rev shuttle protein.

Astrocytes are cellular targets for the human immunodeficiency virus (HIV) that limit virus production, owing, at least in part, to the diminished functionality of the viral post-transcriptional stimulatory factor Rev. To understand the trafficking process in astrocytes, we compared nucleocytoplasmic transport of Rev and various proteins with well-characterized nucleocytoplasmic transport featu...

متن کامل

Diminished rev-mediated stimulation of human immunodeficiency virus type 1 protein synthesis is a hallmark of human astrocytes.

Astrocytes are target cells for human immunodeficiency virus type 1 (HIV-1) in the central nervous system with attenuated virus replication in vivo and in vitro. In infected astrocytes, viral gene expression is restricted mainly to nonstructural (early) viral components like Nef, suggesting inhibition of Rev-dependent posttranscriptional processes in these cells. Because of the heterogeneity of...

متن کامل

Nuclear preservation and cytoplasmic degradation of human immunodeficiency virus type 1 Rev protein.

Rev, a major regulatory protein of human immunodeficiency virus type 1, has been demonstrated to shuttle between the nucleus and cytoplasm of infected cells. The fate of the Rev protein in living cells was evaluated by pulse-chase experiments using a transient Rev expression system. Sixteen hours after chasing with unlabelled amino acids, 45% of the labelled Rev was still present, which clearly...

متن کامل

Nullbasic, a Potent Anti-HIV Tat Mutant, Induces CRM1-Dependent Disruption of HIV Rev Trafficking

Nullbasic, a mutant of the HIV-1 Tat protein, has anti-HIV-1 activity through mechanisms that include inhibition of Rev function and redistribution of the HIV-1 Rev protein from the nucleolus to the nucleoplasm and cytoplasm. Here we investigate the mechanism of this effect for the first time, establishing that redistribution of Rev by Nullbasic is not due to direct interaction between the two ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Virology

دوره 251 1  شماره 

صفحات  -

تاریخ انتشار 1998