Patterns of Nonelectrolyte Permeability in Human Red Blood Cell Membrane

نویسندگان

  • P. Naccache
  • R. I. Sha'afi
چکیده

The permeability of human red cell membrane to 90 different molecules has been measured. These solutes cover a wide spectrum of nonelectrolytes with varying chemical structure, chain length, lipid solubility, chemical reactive group, ability to form hydrogen bonds, and other properties. In general, the present study suggests that the permeability of red cell membrane to a large solute is determined by lipid solubility, its molecular size, and its hydrogen-bonding ability. The permeability coefficient increases with increasing lipid solubility and decreasing ability to form hydrogen bonds, whereas it decreases with increasing molecular size. In the case of small solutes, the predominant diffusion factor is steric hindrance augmented by lipid solubility. It is also found that replacement of a hydroxyl group by a carbonyl group or an ether linkage tends to increase permeability. On the other hand, replacement of a hydroxyl group by an amide group tends to decrease the permeability coefficient.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Water and Nonelectrolyte Permeability Induced in Thin Lipid Membranes by the Polyene Antibiotics Nystatin and Amphotericin B

Nystatin and amphotericin B increase the permeability of thin (<100 A) lipid membranes to ions, water, and nonelectrolytes. Water and nonelectrolyte permeability increase linearly with membrane conductance (i.e., ion permeability). In the unmodified membrane, the osmotic permeability coefficient, P(f), is equal to the tagged water permeability coefficient, (P(d))(w); in the nystatin- or amphote...

متن کامل

Reflection coefficients of permeant molecules in human red cell suspensions

The Staverman reflection coefficient, sigma for several permeant molecules was determined in human red cell suspensions with a Durrum stopped-flow spectrophotometer. This procedure was first used with dog, cat, and beef red cells and with human red cells. The stopped-flow technique used was similar to the rapid-flow method used by those who originally reported sigma measurements in human red ce...

متن کامل

Red cell membrane protein abnormalities as defined by sds-page among patients with anaemia in a west african region hospital practice

Background: Erythrocytes require an ability to deform and to withstand shear stress while negotiating the microcirculation. These properties are largely due to their excess surface area per volume and the characteristics of the membrane’s protein. Deficiencies of these proteins are associated with chronic haemolysis. Methods: This was a cross sectional  study aimed at determining the prevalenc...

متن کامل

Nonelectrolyte Diffusion across Lipid Bilayer Systems

Nonelectrolyte diffusion across the red cell membrane provides informat ion about membrane physical characteristics (1), which has been interpreted in the light of comparisons with model lipid bilayer systems such as liposomes (2). The multilamellar structure of the liposomes makes it difficult to obtain absolute permeability coefficients f rom the initial rate of swelling, the usual measure of...

متن کامل

Permeability Studies on Red Cell Membranes of Dog, Cat, and Beef

Water permeability coefficients of dog, cat, and beef red cell membranes have been measured under an osmotic pressure gradient. The measurements employed a rapid reaction stop flow apparatus with which cell shrinking was measured under a relative osmotic pressure gradient of 1.25 to 1.64 times the isosmolar concentration. For the dog red cell the osmotic permeability coefficient is 0.36 cm(4)/(...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 62  شماره 

صفحات  -

تاریخ انتشار 1973