The Unsteady Wake of a Circular Cylinder near a Free Surface

نویسندگان

  • PAUL REICHL
  • KERRY HOURIGAN
  • MARK THOMPSON
چکیده

The behaviour of the wake Strouhal number for flow past a cylinder close to a free surface at both low and moderate Froude numbers is investigated numerically. For the low Froude number case (i.e., gravity-dominated), the results obtained are similar to those for flow past a cylinder close to an adjacent no-slip boundary. As the distance between the wall and the cylinder is reduced, the Strouhal number, as measured from the time varying lift, increases to a maximum at a gap ratio of 0.70. Further gap reduction leads to a rapid decrease in the Strouhal number, with shedding finally ceasing altogether at gap ratios below 0.16. The agreement between the results for a free surface and a no-slip boundary suggests that the mechanism behind the suppression of vortex shedding is common. For flow at a fixed gap ratio and a moderate Froude number, two distinctly different wake states are observed with the flow passing over the cylinder tending to switch from a state of attachment to the free surface, to one of separation from it, and then back again in a pseudo-periodic fashion. Even though there is a significant difference in Reynolds number, the predicted numerical two-dimensional behaviour is found to compare favourably with the experimental observations at higher Reynolds

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EFFECT OF TIME-DEPENDENT TRANSPIRATION ON AXISYMMETRIC STAGNATION-POINT FLOW AND HEATTRANSFER OF A VISCOUS FLUID ON A MOVING CIRCULAR CYLINDER

Effect of time dependent normal transpiration on the problem of unsteady viscous flow and heat transfer in the vicinity of an axisymmetric stagnation point of an infinite circular cylinder moving simultaneously with time-depended angular and axial velocities and with time-dependent wall temperature or wall heat flux are investigated. The impinging free stream is steady with a strain rate . A re...

متن کامل

Streamwise oscillations of a cylinder beneath a free surface: Free surface effects on fluid forces

A two-dimensional free surface flow past a circular cylinder forced to performstreamwise oscillations in the presence of an oncoming uniform flow is investigated at a Reynolds number of R = 200 and fixed displacement amplitude, A = 0.13, for the forcing frequency-to-natural shedding frequency ratios, f/f0 = 1.5, 2.5, 3.5. This study is based on numerical solutions of the special integral form o...

متن کامل

Experimental investigation for wake of the circular cylinder by attaching different number of tripping wires

An experimental study is conducted on flow past a circular cylinder fitted with some tripping wires on its surface. The work investigates the dependency of the critical wire locations on the wire size and Reynolds numbers, and examines the wake and vortex shedding characteristics in an effort to advance the understanding of the critical wire effects beyond the existing literature. The primary a...

متن کامل

Simulation of Premixed Combustion Flow around Circular Cylinder using Hybrid Random Vortex

This research describes the unsteady two-dimensional reacting flows around a circular cylinder. The numerical solution combines the random vortex method for incompressible two-dimensional viscous fluid flow with a Simple Line Interface Calculation (SLIC) algorithm for the propagation of flame interface. To simplify the governing equations, two fundamental assumptions namely Low Mach Number and ...

متن کامل

Suppression of Unsteady Vortex Shedding from a Circular Cylinder by Using a Passive Jet Flow Control Method

A passive jet flow control method was employed to suppress the unsteady vortex shedding from a circular cylinder at the Reynolds number level of Re= (0.18~1.1)×10. The passive jet flow control was achieved by blowing jets from the holes near the rear stagnation point of the cylinder, which are connected to the in-take holes located near the front stagnation point through channels embedded insid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004