Optimality of index policies for a sequential sampling problem

نویسندگان

  • David A. Castañón
  • Simon Streltsov
  • Pirooz Vakili
چکیده

Consider the following sequential sampling problem: at each time, a choice must be made between obtaining an independent sample from one of a set of random reward variables or stopping the sampling. Sampling a random variable incurs a random cost at each time. The objective of the problem is to maximize the expected net difference between the largest sample reward obtained before stopping and the accumulated costs incurred while sampling. In this paper, the authors prove that the optimal feedback strategies for this problem are index policies and provide an explicit expression for the optimal expected reward from any state. The problem is motivated by search methods for global optimization problems where the cost of computation is explicitly incorporated into the objective.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequential Optimality Conditions and Variational Inequalities

In recent years, sequential optimality conditions are frequently used for convergence of iterative methods to solve nonlinear constrained optimization problems. The sequential optimality conditions do not require any of the constraint qualications. In this paper, We present the necessary sequential complementary approximate Karush Kuhn Tucker (CAKKT) condition for a point to be a solution of a ...

متن کامل

Asymptotic Optimality of Sequential Sampling Policies for Bayesian Information Collection

We consider adaptive sequential sampling policies in a Bayesian framework. Under the assumptions that the sampling distribution is from an exponential family and that the number of distinct measurement types is finite, we give sufficient conditions for an adaptive sampling policy to achieve asymptotic optimality. Here, asymptotic optimality is understood to mean that the limit of the expected l...

متن کامل

On Sequential Optimality Conditions without Constraint Qualifications for Nonlinear Programming with Nonsmooth Convex Objective Functions

Sequential optimality conditions provide adequate theoretical tools to justify stopping criteria for nonlinear programming solvers. Here, nonsmooth approximate gradient projection and complementary approximate Karush-Kuhn-Tucker conditions are presented. These sequential optimality conditions are satisfied by local minimizers of optimization problems independently of the fulfillment of constrai...

متن کامل

Convergence to Global Optimality with Sequential Bayesian Sampling Policies

We consider Bayesian information collection, in which a measurement policy collects information to support a future decision. This framework includes problems in ranking and selection, reinforcement learning, and continuous global optimization. We give sufficient conditions under which measurement policies achieve asymptotically minimal expected loss. Achieving asymptotically minimal expected l...

متن کامل

Optimizing Red Blood Cells Consumption Using Markov Decision Process

In healthcare systems, one of the important actions is related to perishable products such as red blood cells (RBCs) units that its consumption management in different periods can contribute greatly to the optimality of the system. In this paper, main goal is to enhance the ability of medical community to organize the RBCs units’ consumption in way to deliver the unit order timely with a focus ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Automat. Contr.

دوره 44  شماره 

صفحات  -

تاریخ انتشار 1999