Equivalence Classes of Permutations Modulo Replacements Between 123 and Two-Integer Patterns
نویسنده
چکیده
We explore a new type of replacement of patterns in permutations, suggested by James Propp, that does not preserve the length of permutations. In particular, we focus on replacements between 123 and a pattern of two integer elements. We apply these replacements in the classical sense; that is, the elements being replaced need not be adjacent in position or value. Given each replacement, the set of all permutations is partitioned into equivalence classes consisting of permutations reachable from one another through a series of bi-directional replacements. We break the eighteen replacements of interest into four categories by the structure of their classes and fully characterize all of their classes.
منابع مشابه
Counting Permutations Modulo Pattern-Replacement Equivalences for Three-Letter Patterns
We study a family of equivalence relations on Sn, the group of permutations on n letters, created in a manner similar to that of the Knuth relation and the forgotten relation. For our purposes, two permutations are in the same equivalence class if one can be reached from the other through a series of pattern-replacements using patterns whose order permutations are in the same part of a predeter...
متن کاملEquivalence Classes of Permutations under Various Relations Generated by Constrained Transpositions
We consider a large family of equivalence relations on the symmetric group of permutations of n that generalize those discovered by Knuth in his study of the RobinsonSchensted correspondence. In our most general setting, two permutations are equivalent if one can be obtained from the other by a sequence of pattern-replacing moves of prescribed form; however, we limit our focus to patterns where...
متن کاملEquivalence Relations of Permutations Generated by Constrained Transpositions
We consider a large family of equivalence relations on permutations in Sn that generalise those discovered by Knuth in his study of the Robinson-Schensted correspondence. In our most general setting, two permutations are equivalent if one can be obtained from the other by a sequence of pattern-replacing moves of prescribed form; however, we limit our focus to patterns where two elements are tra...
متن کاملJ un 2 01 7 Enumerations of Permutations Simultaneously Avoiding a Vincular and a Covincular Pattern of Length
Vincular and covincular patterns are generalizations of classical patterns allowing restrictions on the indices and values of the occurrences in a permutation. In this paper we study the integer sequences arising as the enumerations of permutations simultaneously avoiding a vincular and a covincular pattern, both of length 3, with at most one restriction. We see familiar sequences, such as the ...
متن کاملEnumerations of Permutations Simultaneously Avoiding a Vincular and a Covincular Pattern of Length 3
Vincular and covincular patterns are generalizations of classical patterns allowing restrictions on the indices and values of the occurrences in a permutation. In this paper we study the integer sequences arising as the enumerations of permutations simultaneously avoiding a vincular and a covincular pattern, both of length 3, with at most one restriction. We see familiar sequences, such as the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 21 شماره
صفحات -
تاریخ انتشار 2014