Recognition of Higher-Order Relations among Features in Textual Cases Using Random Indexing
نویسندگان
چکیده
We envisage retrieval in textual case-based reasoning (TCBR) as an instance of abductive reasoning. The two main subtasks underlying abductive reasoning are ‘hypotheses generation’ where plausible case hypotheses are generated, and ‘hypothesis testing’ where the best hypothesis is selected among these in sequel. The central idea behind the presented two-stage retrieval model for TCBR is that recall relies on lexical equality of features in the cases while recognition requires mining higher order semantic relations among features. The proposed account of recognition relies on a special representation called random indexing, and applies a method that simultaneously performs an implicit dimension reduction and discovers higher order relations among features based on their meanings that can be learned incrementally. Hence, similarity assessment in recall is computationally less expensive and is applied on the whole case base while in recognition a computationally more expensive method is employed but only on the case hypotheses pool generated by recall. It is shown that the two-stage model gives promising results.
منابع مشابه
NTNU-CORE: Combining strong features for semantic similarity
The paper outlines the work carried out at NTNU as part of the *SEM’13 shared task on Semantic Textual Similarity, using an approach which combines shallow textual, distributional and knowledge-based features by a support vector regression model. Feature sets include (1) aggregated similarity based on named entity recognition with WordNet and Levenshtein distance through the calculation of maxi...
متن کاملA Novel Approach to Conditional Random Field-based Named Entity Recognition using Persian Specific Features
Named Entity Recognition is an information extraction technique that identifies name entities in a text. Three popular methods have been conventionally used namely: rule-based, machine-learning-based and hybrid of them to extract named entities from a text. Machine-learning-based methods have good performance in the Persian language if they are trained with good features. To get good performanc...
متن کاملOutline Shape Retrieval Using Textual Descriptors and Geometric Features
Content_based image retrieval is a promising approach because of its automatic indexing, recognition and retrieval. This paper is a contribution in the field of the content Based Image Retrieval (CBIR). Objects are represented by their outlines shapes (silhouettes) and described following the XLWDOS Textual Description (Larabi et al., 2003). Textual Descriptors are sensitive to noise. The autho...
متن کاملRelating Graphical Features with Concept Classes for Automatic News Video Indexing
Automatic indexing of video data, especially news videos, is in strong demand considering their contents' importance and value. Various attempts have been made to index news videos automatically in order to cope with this demand, including recent challenges that utilize accompanying textual information. However, most of these methods tend to be textual information driven, which do not thoroughl...
متن کاملSecond-Order Word Embeddings from Nearest Neighbor Topological Features
We introduce second-order vector representations of words, induced from nearest neighborhood topological features in pre-trained contextual word embeddings. We then analyze the effects of using second-order embeddings as input features in two deep natural language processing models, for named entity recognition and recognizing textual entailment, as well as a linear model for paraphrase recogni...
متن کامل