Can a membrane oxygenator be a model for lung NO and CO transfer?
نویسندگان
چکیده
To model lung nitric oxide (NO) and carbon monoxide (CO) uptake, a membrane oxygenator circuit was primed with horse blood flowing at 2.5 l/min. Its gas channel was ventilated with 5 parts/million NO, 0.02% CO, and 22% O2 at 5 l/min. NO diffusing capacity (Dno) and CO diffusing capacity (Dco) were calculated from inlet and outlet gas concentrations and flow rates: Dno = 13.45 ml.min(-1).Torr(-1) (SD 5.84) and Dco = 1.22 ml.min(-1).Torr(-1) (SD 0.3). Dno and Dco increased (P = 0.002) with blood volume/surface area. 1/Dno (P < 0.001) and 1/Dco (P < 0.001) increased with 1/Hb. Dno (P = 0.01) and Dco (P = 0.004) fell with increasing gas flow. Dno but not Dco increased with hemolysis (P = 0.001), indicating Dno dependence on red cell diffusive resistance. The posthemolysis value for membrane diffusing capacity = 41 ml.min(-1).Torr(-1) is the true membrane diffusing capacity of the system. No change in Dno or Dco occurred with changing blood flow rate. 1/Dco increased (P = 0.009) with increasing Po2. Dno and Dco appear to be diffusion limited, and Dco reaction limited. In this apparatus, the red cell and plasma offer a significant barrier to NO but not CO diffusion. Applying the Roughton-Forster model yields similar specific transfer conductance of blood per milliliter for NO and CO to previous estimates. This approach allows alteration of membrane area/blood volume, blood flow, gas flow, oxygen tension, red cell integrity, and hematocrit (over a larger range than encountered clinically), while keeping other variables constant. Although structurally very different, it offers a functional model of lung NO and CO transfer.
منابع مشابه
COUPLING MODEL FOR MULTI-COMPONENT GAS PERMEATION PROCESS
A gas permeation model (Coupling Model) has been developed which has the flexibility to be used for different membrane module configurations. The aim of this work is to predict the performance of a single stage gas separation process using membranes and provide a comprehensive description of process parameters like flow rates, composition, stage cut and stream pressure. The significant feature ...
متن کاملMechanistic Modeling of Organic Compounds Separation from Water via Polymeric Membranes
A mathematical model considering mass and momentum transfer was developed for simulation of ethanol dewatering via pervaporation process. The process involves removal of water from a water/ethanol liquid mixture using a dense polymeric membrane. The model domain was divided into two compartments including feed and membrane. For a description of water transport in ...
متن کاملنگرشی بر سیر تکاملی و کاربردهای بالینی اکسیژناتورها: گذشته، حال و آینده
Several therapeutic methods require an artificial lung (oxygenator) to replace the physiological function of lung. For instance, in some acute respiratory syndromes, the patient’s lungs are unable to perform their normal function and would need an assistive device to fulfill their performance. Moreover, in cardio-pulmonary bypass, when the heart has stopped pumping, blood is not sent to the lun...
متن کاملImpact of hollow-fiber membrane surface area on oxygenator performance: Dideco D903 Avant versus a prototype with larger surface area.
This study compares the gas transfer capacity, the blood trauma, and the blood path resistance of the hollow-fiber membrane oxygenator Dideco D 903 with a surface area of 1.7 m2 (oxygenator 1.7) versus a prototype built on the same principles but with a surface area of 2 m2 (oxygenator 2). Six calves (mean body weight: 68.2 +/- 3.2 kg) were connected to cardiopulmonary bypass (CPB) by jugular v...
متن کاملTwo-dimensional Simulation of Mass Transfer and Nano-Particle Deposition of Cigarette Smoke in a Human Airway
The chance of developing lung cancer is increased through being exposed to cigarette smoke illustrated by studies. It is vital to understand the development of particular histologic-type cancers regarding the deposition of carcinogenic particles, which are present in human airway. In this paper, the mass transfer and deposition of cigarette smoke, inside the human airway, are investigated apply...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 100 5 شماره
صفحات -
تاریخ انتشار 2006