Temporal-related Convolutional-Restricted-Boltzmann-Machine capable of learning relational order via reinforcement learning procedure?

نویسنده

  • Zizhuang Wang
چکیده

In this article, we extend the conventional framework of convolutional-Restricted-Boltzmann-Machine to learn highly abstract features among abitrary number of time related input maps by constructing a layer of multiplicative units, which capture the relations among inputs. In many cases, more than two maps are strongly related, so it is wise to make multiplicative unit learn relations among more input maps, in other words, to find the optimal relational-order of each unit. In order to enable our machine to learn relational order, we developed a reinforcement-learning method whose optimality is proven to train the network.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images

Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...

متن کامل

Automatically Mapped Transfer between Reinforcement Learning Tasks via Three-Way Restricted Boltzmann Machines

Reinforcement learning applications are hampered by the tabula rasa approach taken by existing techniques. Transfer for reinforcement learning tackles this problem by enabling the reuse of previously learned results, but requires an inter-task mapping to encode how the previously learned task and the new task are related. This paper presents an autonomous framework for learning inter-task mappi...

متن کامل

Deep Learning of Invariant Spatio-Temporal Features from Video

We present a novel hierarchical and distributed model for learning invariant spatiotemporal features from video. Our approach builds on previous deep learning methods and uses the Convolutional Restricted Boltzmann machine (CRBM) as a building block. Our model, called the Space-Time Deep Belief Network (STDBN), aggregates over both space and time in an alternating way so that higher layers capt...

متن کامل

Actor-Critic Reinforcement Learning with Energy-Based Policies

We consider reinforcement learning in Markov decision processes with high dimensional state and action spaces. We parametrize policies using energy-based models (particularly restricted Boltzmann machines), and train them using policy gradient learning. Our approach builds upon Sallans and Hinton (2004), who parameterized value functions using energy-based models, trained using a non-linear var...

متن کامل

Reinforcement learning using quantum Boltzmann machines

We investigate whether quantum annealers with select chip layouts can outperform classical computers in reinforcement learning tasks. We associate a transverse field Ising spin Hamiltonian with a layout of qubits similar to that of a deep Boltzmann machine (DBM) and use simulated quantum annealing (SQA) to numerically simulate quantum sampling from this system. We design a reinforcement learnin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1706.08001  شماره 

صفحات  -

تاریخ انتشار 2017