Reduced virulence of an fliC mutant of Shiga-toxigenic Escherichia coli O113:H21.
نویسندگان
چکیده
The contribution of flagellin to the virulence of the O113:H21 Shiga-toxigenic Escherichia coli (STEC) strain 98NK2 was investigated in the streptomycin-treated mouse model. Groups of mice were challenged with either the wild-type STEC or a fliC deletion derivative thereof. There was no difference in the level of gut colonization by the two strains, but the fliC mutant was significantly less virulent than its parent; the overall survival rates were 43.7% and 81.2%, respectively (P < 0.025). This is the first report of a nontoxic accessory virulence factor contributing to a fatal outcome of STEC infection in this model. Although H21 FliC is known to be a potent inducer of CXC chemokines, including interleukin 8, there was no obvious difference in the recruitment of polymorphonuclear leukocytes to the intestinal epithelium of mice challenged with either strain. However, immunofluorescence microscopy suggested that the fliC mutant was less capable of forming a close association with the colonic epithelium. This may have reduced the uptake of Stx2 by mice infected with the mutant.
منابع مشابه
Sab, a novel autotransporter of locus of enterocyte effacement-negative shiga-toxigenic Escherichia coli O113:H21, contributes to adherence and biofilm formation.
Shiga-toxigenic Escherichia coli (STEC) strains cause serious gastrointestinal disease, which can lead to potentially life-threatening systemic complications such as hemolytic-uremic syndrome. Although the production of Shiga toxin has been considered to be the main virulence trait of STEC for many years, the capacity to colonize the host intestinal epithelium is a crucial step in pathogenesis....
متن کاملVirulence characterization of Shiga-toxigenic Escherichia coli isolates from wholesale produce.
The 13 Shiga-toxigenic Escherichia coli (STEC) strains isolated from wholesale spinach and lettuce consisted mostly of serotypes that have not been implicated in illness. Among these strains, however, were two O113:H21 that carried virulence genes common to this pathogenic serotype (stx(2), ehxA, saa, and subAB), suggesting that their presence in ready-to-eat produce may be of health concern.
متن کاملInhibition of water absorption and selective damage to human colonic mucosa are induced by subtilase cytotoxin produced by Escherichia coli O113:H21.
Shiga toxin-producing Escherichia coli O157:H7 (STEC) is by far the most prevalent serotype associated with hemolytic uremic syndrome (HUS) although many non-O157 STEC strains have been also isolated from patients with HUS. The main virulence factor of STEC is the Shiga toxin type 2 (Stx2) present in O157 and non-O157 strains. Recently, another toxin, named subtilase cytotoxin (SubAB), has been...
متن کاملMolecular characterization of the locus encoding biosynthesis of the lipopolysaccharide O antigen of Escherichia coli serotype O113.
Shiga toxigenic Escherichia coli (STEC) strains are a diverse group of organisms capable of causing severe gastrointestinal disease in humans. Within the STEC family, eae-positive STEC strains, particularly those belonging to serogroups O157 and O111, appear to have greater virulence for humans. However, in spite of being eae negative, STEC strains belonging to serogroup O113 have frequently be...
متن کاملMolecular characterization of a Shiga toxigenic Escherichia coli O113:H21 strain lacking eae responsible for a cluster of cases of hemolytic-uremic syndrome.
Shiga toxigenic Escherichia coli (STEC) strains are a diverse group of organisms capable of causing severe gastrointestinal disease in humans. Within the STEC family, certain strains appear to have greater virulence for humans. STEC strains carrying eae and belonging to serogroup O157 or O111 have been responsible for the vast majority of outbreaks of STEC disease reported to date. Here we desc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 74 3 شماره
صفحات -
تاریخ انتشار 2006