A Newton-picard Approach for Efficient Numerical Solution of Time-periodic Parabolic Pde Constrained Optimization Problems
نویسنده
چکیده
We investigate an iterative method for the solution of time-periodic parabolic PDE constrained optimization problems. It is an inexact Sequential Quadratic Programming (iSQP) method based on the Newton-Picard approach. We present and analyze a linear quadratic model problem and prove optimal mesh-independent convergence rates. Additionally, we propose a two-grid variant of the Newton-Picard method. Numerical results for the classical and the two-grid variants of the Newton-Picard iSQP method as a solver and as a preconditioner for GMRES are presented.
منابع مشابه
Solving Parabolic and Non-linear 1d Problems with Periodic Boundary Conditions
A new class of hybrid schemes and composite inner-outer iterative schemes in conjunction with Picard and Newton methods based on explicit approximate inverse arrowtype matrix techniques is introduced. Isomorphic methods in conjunction with explicit preconditioned schemes based on approximate inverse matrix techniques are presented for the efficient solution of arrow-type linear systems. Applica...
متن کاملOptimization with the time-dependent Navier-Stokes equations as constraints
In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...
متن کاملOne-shot solution of a time-dependent time-periodic PDE-constrained optimization problem
In this paper we describe the efficient solution of a PDE-constrained optimization problem subject to the time-periodic heat equation. We propose a space-time formulation for which we develop a monolithic solver. We present preconditioners well suited to approximate the Schur-complement of the saddle point system associated with the first order conditions. This means that in addition to a Richa...
متن کاملLossy compression for PDE-constrained optimization: adaptive error control
For the solution of optimal control problems governed by nonlinear parabolic PDEs, methods working on the reduced objective functional are often employed to avoid a full spatio-temporal discretization of the problem. The evaluation of the reduced gradient requires one solve of the state equation forward in time, and one backward solve of the adjoint equation. The state enters into the adjoint e...
متن کاملAn Inexact Newton-Krylov Algorithm for Constrained Diffeomorphic Image Registration
We propose numerical algorithms for solving large deformation diffeomorphic image registration problems. We formulate the nonrigid image registration problem as a problem of optimal control. This leads to an infinite-dimensional partial differential equation (PDE) constrained optimization problem. The PDE constraint consists, in its simplest form, of a hyperbolic transport equation for the evol...
متن کامل