Sodium shortage as a constraint on the carbon cycle in an inland tropical rainforest.

نویسندگان

  • Michael Kaspari
  • Stephen P Yanoviak
  • Robert Dudley
  • May Yuan
  • Natalie A Clay
چکیده

Sodium (Na) is uncommon in plants but essential to the metabolism of plant consumers, both decomposers and herbivores. One consequence, previously unexplored, is that as Na supplies decrease (e.g., from coastal to inland forests), ecosystem carbon should accumulate as detritus. Here, we show that adding NaCl solution to the leaf litter of an inland Amazon forest enhanced mass loss by 41%, decreased lignin concentrations by 7%, and enhanced decomposition of pure cellulose by up to 50%, compared with stream water alone. These effects emerged after 13-18 days. Termites, a common decomposer, increased 7-fold on +NaCl plots, suggesting an agent for the litter loss. Ants, a common predator, increased 2-fold, suggesting that NaCl effects cascade upward through the food web. Sodium, not chloride, was likely the driver of these patterns for two reasons: two compounds of Na (NaCl and NaPO(4)) resulted in equivalent cellulose loss, and ants in choice experiments underused Cl (as KCl, MgCl(2), and CaCl(2)) relative to NaCl and three other Na compounds (NaNO(3), Na(3)PO(4), and Na(2)SO(4)). We provide experimental evidence that Na shortage slows the carbon cycle. Because 80% of global landmass lies >100 km inland, carbon stocks and consumer activity may frequently be regulated via Na limitation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How energy and water availability constrain vegetation water-use along the North Australian Tropical Transect

Energy and water availability were identified as the first order controls of evapotranspiration(ET) in ecohyrodrology. With a ~1,000 km precipitation gradient and distinct wet-dry climate,the North Australian Tropical Transect (NATT) was well suited for evaluating how energy andwater availabilities constrain water use by vegetation, but has not been done yet. In this study,we addressed this que...

متن کامل

Understorey bird responses to the edge-interior gradient in an isolated tropical rainforest of Malaysia

Forest fragmentation results in a loss of forest interior and an increase in edge habitat. We studied how understorey bird community composition and habitat variables changed along an edge-to-interior gradient in a 1248-ha lowland rainforest patch in peninsular Malaysia. Birds and environmental variables such as vegetation structure and litter depth were detected within a 25-m radius of each of...

متن کامل

Tropical rainforest response to marine sky brightening climate engineering

Tropical forests represent a major atmospheric carbon dioxide sink. Here the gross primary productivity (GPP) response of tropical rainforests to climate engineering via marine sky brightening under a future scenario is investigated in three Earth systemmodels. The model response is diverse, and in two of the three models, the tropical GPP shows a decrease from the marine sky brightening climat...

متن کامل

Field-quantified responses of tropical rainforest aboveground productivity to increasing CO2 and climatic stress, 1997–2009

[1] A directional change in tropical-forest productivity, a large component in the global carbon budget, would affect the rate of increase in atmospheric carbon dioxide ([CO2]). One current hypothesis is that “CO2 fertilization” has been increasing tropical forest productivity. Some lines of evidence instead suggest climate-driven productivity declines. Relevant direct field observations remain...

متن کامل

From leaf to forests: Measuring vegetation water stress across scales

Vegetation water stress significantly affects agricultural and tropical forest canopies. Water shortages in crops influence plant water dynamics, reduces primary production and might eventually lead to plant death. Tropical forests are essential part of global carbon and water cycle. Continuing drying of e.g. the Amazon rainforest might accelerate climate change through carbon losses and changi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 106 46  شماره 

صفحات  -

تاریخ انتشار 2009