On endomorphisms of groups of order 32 with maximal subgroups C 42 or C 2 4
نویسنده
چکیده
It is proved that each group of order 32 that has a maximal subgroup isomorphic to C2×C2×C2×C2 or C4×C4 is determined by its endomorphism semigroup in the class of all groups.
منابع مشابه
Quasicompact and Riesz unital endomorphisms of real Lipschitz algebras of complex-valued functions
We first show that a bounded linear operator $ T $ on a real Banach space $ E $ is quasicompact (Riesz, respectively) if and only if $T': E_{mathbb{C}}longrightarrow E_{mathbb{C}}$ is quasicompact (Riesz, respectively), where the complex Banach space $E_{mathbb{C}}$ is a suitable complexification of $E$ and $T'$ is the complex linear operator on $E_{mathbb{C}}$ associated with $T$. Next, we pr...
متن کاملON c-SUPPLEMENTED MAXIMAL AND MINIMAL SUBGROUPS OF SYLOW SUBGROUPS OF FINITE GROUPS
This paper proves: Let F be a saturated formation containing U . Suppose that G is a group with a normal subgroup H such that G/H ∈ F . (1) If all maximal subgroups of any Sylow subgroup of F ∗(H) are c-supplemented in G, then G ∈ F ; (2) If all minimal subgroups and all cyclic subgroups with order 4 of F ∗(H) are c-supplemented in G, then G ∈ F .
متن کاملTriple factorization of non-abelian groups by two maximal subgroups
The triple factorization of a group $G$ has been studied recently showing that $G=ABA$ for some proper subgroups $A$ and $B$ of $G$, the definition of rank-two geometry and rank-two coset geometry which is closely related to the triple factorization was defined and calculated for abelian groups. In this paper we study two infinite classes of non-abelian finite groups $D_{2n}$ and $PSL(2,2^{n})$...
متن کاملOn non-normal non-abelian subgroups of finite groups
In this paper we prove that a finite group $G$ having at most three conjugacy classes of non-normal non-abelian proper subgroups is always solvable except for $Gcong{rm{A_5}}$, which extends Theorem 3.3 in [Some sufficient conditions on the number of non-abelian subgroups of a finite group to be solvable, Acta Math. Sinica (English Series) 27 (2011) 891--896.]. Moreover, we s...
متن کاملOn the type of conjugacy classes and the set of indices of maximal subgroups
Let $G$ be a finite group. By $MT(G)=(m_1,cdots,m_k)$ we denote the type of conjugacy classes of maximal subgroups of $G$, which implies that $G$ has exactly $k$ conjugacy classes of maximal subgroups and $m_1,ldots,m_k$ are the numbers of conjugates of maximal subgroups of $G$, where $m_1leqcdotsleq m_k$. In this paper, we give some new characterizations of finite groups by ...
متن کامل