Closed-state inactivation in Kv4.3 isoforms is differentially modulated by protein kinase C.

نویسندگان

  • Chang Xie
  • Vladimir E Bondarenko
  • Michael J Morales
  • Harold C Strauss
چکیده

Kv4.3, with its complex open- and closed-state inactivation (CSI) characteristics, is a primary contributor to early cardiac repolarization. The two alternatively spliced forms, Kv4.3-short (Kv4.3-S) and Kv4.3-long (Kv4.3-L), differ by the presence of a 19-amino acid insert downstream from the sixth transmembrane segment. The isoforms are similar kinetically; however, the longer form has a unique PKC phosphorylation site. To test the possibility that inactivation is differentially regulated by phosphorylation, we expressed the Kv4.3 isoforms in Xenopus oocytes and examined changes in their inactivation properties after stimulation of PKC activity. Whereas there was no difference in open-state inactivation, there were profound differences in CSI. In Kv4.3-S, PMA reduced the magnitude of CSI by 24% after 14.4 s at -50 mV. In contrast, the magnitude of CSI in Kv4.3-L increased by 25% under the same conditions. Mutation of a putatively phosphorylated threonine (T504) to aspartic acid within a PKC consensus recognition sequence unique to Kv4.3-L eliminated the PMA response. The change in CSI was independent of the intervention used to increase PKC activity; identical results were obtained with either PMA or injected purified PKC. Our previously published 11-state model closely simulated our experimental data. Our data demonstrate isoform-specific regulation of CSI by PKC in Kv4.3 and show that the carboxy terminus of Kv4.3 plays an important role in regulation of CSI.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time- and voltage-dependent components of Kv4.3 inactivation.

Kv4.3 inactivation is a complex multiexponential process, which can occur from both closed and open states. The fast component of inactivation is modulated by the N-terminus, but the mechanisms mediating the other components of inactivation are controversial. We studied inactivation of Kv4.3 expressed in Xenopus laevis oocytes, using the two-electrode voltage-clamp technique. Inactivation durin...

متن کامل

Inhibition of Kv4.3 by genistein via a tyrosine phosphorylation-independent mechanism.

The effects of genistein, a protein tyrosine kinase (PTK) inhibitor, on voltage-dependent K(+) (Kv) 4.3 channel were examined using the whole cell patch-clamp techniques. Genistein inhibited Kv4.3 in a reversible, concentration-dependent manner with an IC(50) of 124.78 μM. Other PTK inhibitors (tyrphostin 23, tyrphostin 25, lavendustin A) had no effect on genistein-induced inhibition of Kv4.3. ...

متن کامل

Functional modulation of the transient outward current Ito by KCNE beta-subunits and regional distribution in human non-failing and failing hearts.

OBJECTIVES The function of Kv4.3 (KCND3) channels, which underlie the transient outward current I(to) in human heart, can be modulated by several accessory subunits such as KChIP2 and KCNE1-KCNE5. Here we aimed to determine the regional expression of Kv4.3, KChIP2, and KCNE mRNAs in non-failing and failing human hearts and to investigate the functional consequences of subunit coexpression in he...

متن کامل

DPP10 is an inactivation modulatory protein of Kv4.3 and Kv1.4.

Voltage-gated K(+) channels exist in vivo as multiprotein complexes made up of pore-forming and ancillary subunits. To further our understanding of the role of a dipeptidyl peptidase-related ancillary subunit, DPP10, we expressed it with Kv4.3 and Kv1.4, two channels responsible for fast-inactivating K(+) currents. Previously, DPP10 has been shown to effect Kv4 channels. However, Kv1.4, when ex...

متن کامل

Novel KChIP2 isoforms increase functional diversity of transient outward potassium currents.

Kv4.3 channels conduct transient outward K(+) currents in the human heart and brain where they mediate the early phase of action potential repolarization. KChIP2 proteins are members of a new class of calcium sensors that modulate the surface expression and biophysical properties of Kv4 K(+) channels. Here we describe three novel isoforms of KChIP2 with an alternatively spliced C-terminus (KChI...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 297 5  شماره 

صفحات  -

تاریخ انتشار 2009