Probabilistic Brain Atlas Encoding Using Bayesian Inference

نویسنده

  • Koenraad Van Leemput
چکیده

This paper addresses the problem of creating probabilistic brain atlases from manually labeled training data. We propose a general mesh-based atlas representation, and compare different atlas models by evaluating their posterior probabilities and the posterior probabilities of their parameters. Using such a Baysian framework, we show that the widely used "average" brain atlases constitute relatively poor priors, partly because they tend to overfit the training data, and partly because they do not allow to align corresponding anatomical features across datasets. We also demonstrate that much more powerful representations can be built using content-adaptive meshes that incorporate non-rigid deformation field models. We believe extracting optimal prior probability distributions from training data is crucial in light of the central role priors play in many automated brain MRI analysis techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Introduction to Inference and Learning in Bayesian Networks

Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...

متن کامل

Load-Frequency Control: a GA based Bayesian Networks Multi-agent System

Bayesian Networks (BN) provides a robust probabilistic method of reasoning under uncertainty. They have been successfully applied in a variety of real-world tasks but they have received little attention in the area of load-frequency control (LFC). In practice, LFC systems use proportional-integral controllers. However since these controllers are designed using a linear model, the nonlinearities...

متن کامل

A Survey on Learning Bayesian Networks and Probabilistic Models of Cognition

In this paper, we present a collection of studies on learning Bayesian networks and one of its applications probabilistic models of human cognition. A Bayesian network is an encoding of probabilistic relationships among random variables via graphical models. Probabilistic models of cognition aim to explain human cognition by depending on the principles of probability theory and statistics. Prob...

متن کامل

Risk Analysis of Operating Room Using the Fuzzy Bayesian Network Model

To enhance Patient’s safety, we need effective methods for risk management. This work aims to propose an integrated approach to risk management for a hospital system. To improve patient’s safety, we should develop flexible methods where different aspects of risk and type of information are taken into consideration. This paper proposes a fuzzy Bayesian network to model and analyze risk in the op...

متن کامل

On probabilistic inference by weighted model counting

A recent and effective approach to probabilistic inference calls for reducing the problem to one of weighted model counting (WMC) on a propositional knowledge base. Specifically, the approach calls for encoding the probabilistic model, typically a Bayesian network, as a propositional knowledge base in conjunctive normal form (CNF) with weights associated to each model according to the network p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention

دوره 9 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2006