Control of chemotaxis in Physarum polycephalum
نویسندگان
چکیده
Plasmodia migrate towards those situations which increase the frequency of their alternations in streaming, and away from those which decrease the frequency. Therefore peristalsis-like waves in Physarum move in the direction opposite from the net movement of the organism. The mechanism is fundamentally related to other known types of chemotaxis.
منابع مشابه
Routing of Physarum polycephalum “signals” using simple chemicals
In previous work the chemotaxis toward simple organic chemicals was assessed. We utilize the knowledge gained from these chemotactic assays to route Physarum polycephalum "signals" at a series of junctions. By applying chemical inputs at a simple T-junction we were able to reproducibly control the path taken by the plasmodium of P. Polycephalum. Where the chemoattractant farnesene was used at o...
متن کاملAssessing the chemotaxis behavior of Physarum polycephalum to a range of simple volatile organic chemicals
The chemotaxis behavior of the plasmodial stage of the true slime mold Physarum Polycephalum was assessed when given a binary choice between two volatile organic chemicals (VOCs) placed in its environment. All possible binary combinations were tested between 19 separate VOCs selected due to their prevalence and biological activity in common plant and insect species. The slime mold exhibited pos...
متن کاملPlant hairy root cultures as plasmodium modulators of the slime mold emergent computing substrate Physarum polycephalum
Roots of the medicinal plant Valeriana officinalis are well-studied for their various biological activities. We applied genetically transformed V. officinalis root biomass to exert control of Physarum polycephalum, an amoeba-based emergent computing substrate. The plasmodial stage of the P. polycephalum life cycle constitutes a single, multinucleate cell visible by unaided eye. The plasmodium m...
متن کاملOscillatory contraction activity in Physarum.
The plasmodia of Physarum polycephalum show different oscillatory phenomena (time period approximately 1.3 min) in their contraction behaviour and their protoplasmic flow. The force generating system for these phenomena is cytoplasmic actomyosin. The biochemical nature and location(s) of the oscillator(s), i.e. the clock governing these phenomena are unknown. The following locations are discuss...
متن کاملCharacteristics of Pattern Formation and Evolution in Approximations of Physarum Transport Networks
Most studies of pattern formation place particular emphasis on its role in the development of complex multicellular body plans. In simpler organisms, however, pattern formation is intrinsic to growth and behavior. Inspired by one such organism, the true slime mold Physarum polycephalum, we present examples of complex emergent pattern formation and evolution formed by a population of simple part...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 69 شماره
صفحات -
تاریخ انتشار 1976