Deep Reduced PEDOT Films Support Electrochemical Applications: Biomimetic Color Front
نویسندگان
چکیده
Most of the literature accepts, despite many controversial results, that during oxidation/reduction films of conducting polymers (CPs) move from electronic conductors to insulators. Thus, engineers and device's designers are forced to use metallic supports to reoxidize the material for reversible device work. Electrochromic front experiments appear as main visual support of the claimed insulating nature of reduced CPs. Here, we present a different design of the biomimetic electrochromic front that corroborates the electronic and ionic conducting nature of deep reduced films. The direct contact PEDOT metal/electrolyte and film/electrolyte was prevented from electrolyte contact until 1 cm far from the metal contact with protecting Parafilm(®). The deep reduced PEDOT film supports the flow of high currents promoting reaction induced electrochromic color changes beginning 1 cm far from the metal-polymer electrical contact and advancing, through the reduced film, toward the metal contact. Reverse color changes during oxidation/reduction always are initiated at the film/electrolyte contact advancing, under the protecting film, toward the film/metal contact. Both reduced and oxidized states of the film demonstrate electronic and ionic conductivities high enough to be used for electronic applications or, as self-supported electrodes, for electrochemical devices. The electrochemically stimulated conformational relaxation model explains those results.
منابع مشابه
Electro-synthesis of novel nanostructured PEDOT films and their application as catalyst support
Poly(3,4-ethylenedioxythiophene) (PEDOT) films doped with nitric and chlorine ions have been electrochemically deposited simply by a one-step electrochemical method in an aqueous media in the absence of any surfactant. The fabricated PEDOT films were characterized by scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. The results indicate that the hierarchica...
متن کاملPoly[3,4-ethylene dioxythiophene (EDOT) -co- 1,3,5-tri[2-(3,4-ethylene dioxythienyl)]-benzene (EPh)] copolymers (PEDOT-co-EPh): optical, electrochemical and mechanical properties.
PEDOT-co-EPh copolymers with systematic variations in composition were prepared by electrochemical polymerization from mixed monomer solutions in acetonitrile. The EPh monomer is a trifunctional crosslinking agent with three EDOTs around a central benzene ring. With increasing EPh content, the color of the copolymers changed from blue to yellow to red due to decreased absorption in the near inf...
متن کاملFlexible conducting polymer/reduced graphene oxide films: synthesis, characterization, and electrochemical performance
In this paper, we demonstrate the preparation of a flexible poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonate)/reduced graphene oxide (PEDOT-PSS/RGO) film with a layered structure via a simple vacuum filtered method as a high performance electrochemical electrode. The PEDOT-PSS/RGO films are characterized by scanning electron microscopy (SEM), X-ray diffraction, Raman spectroscopy, and ...
متن کاملDeposition Dependent Ion Transport in Doped Conjugated Polymer Films: Insights for Creating HighPerformance Electrochemical Devices
DOI: 10.1002/admi.201700873 transport.[20] When interfaced with an electrolyte, redox events in conjugated poly mer films are also accompanied by film swelling or deswelling due to ion and/or solvent diffusion into or out of the films, respectively. The response times and fatigue resistances of devices that subject electroactive films to periodic cycles of oxidation/reduction are, thus, crucial...
متن کاملFabrication of PEDOT Nanocone Arrays with Electrochemically Modulated Broadband Antireflective Properties.
Ordered nanocone arrays of the electroactive polymer poly(3,4-ethylenedioxythiophene) (PEDOT) were fabricated by the simultaneous oxygen plasma etching of an electrodeposited PEDOT thin film coated with a hexagonally closed packed polystyrene bead monolayer. PEDOT nanocone arrays with an intercone spacing of 200 nm and an average nanocone height of 350 nm exhibited a low broadband reflectivity ...
متن کامل