Surface Engineering of Liposomes for Stealth Behavior
نویسندگان
چکیده
Liposomes are used as a delivery vehicle for drug molecules and imaging agents. The major impetus in their biomedical applications comes from the ability to prolong their circulation half-life after administration. Conventional liposomes are easily recognized by the mononuclear phagocyte system and are rapidly cleared from the blood stream. Modification of the liposomal surface with hydrophilic polymers delays the elimination process by endowing them with stealth properties. In recent times, the development of various materials for surface engineering of liposomes and other nanomaterials has made remarkable progress. Poly(ethylene glycol)-linked phospholipids (PEG-PLs) are the best representatives of such materials. Although PEG-PLs have served the formulation scientists amazingly well, closer scrutiny has uncovered a few shortcomings, especially pertaining to immunogenicity and pharmaceutical characteristics (drug loading, targeting, etc.) of PEG. On the other hand, researchers have also begun questioning the biological behavior of the phospholipid portion in PEG-PLs. Consequently, stealth lipopolymers consisting of non-phospholipids and PEG-alternatives are being developed. These novel lipopolymers offer the potential advantages of structural versatility, reduced complement activation, greater stability, flexible handling and storage procedures and low cost. In this article, we review the materials available as alternatives to PEG and PEG-lipopolymers for effective surface modification of liposomes.
منابع مشابه
Development and Validation of an Ion Chromatography Method for Quantification of Ammonium Ions in STEALTH® Liposomes
Ammonium sulfate is one of the subsidiary components in the stealth liposome structure. The ratio of ammonium ion bound to liposome sphere to ammonium ions outside the liposome plays an important role in drug delivery formulation; accordingly, in order to quantify the ammonium ion in the liposome structure, a rapid and sensitive method was validated using a conductivity detector. Through this m...
متن کاملResearch Article
Liposomes, which are biodegradable and essentially non-toxic vehicles, can encapsulate both hydrophilic and hydrophobic materials, and are utilized as drug carriers in drug delivery systems. Stealth liposomes are surface modified liposomes in which PEG units are attached to the outer surface of liposome units, so that they can escape the opsonization effect in the blood, which is a major cause ...
متن کاملStealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential
Among several promising new drug-delivery systems, liposomes represent an advanced technology to deliver active molecules to the site of action, and at present several formulations are in clinical use. Research on liposome technology has progressed from conventional vesicles ("first-generation liposomes") to "second-generation liposomes", in which long-circulating liposomes are obtained by modu...
متن کاملDoxorubicin encapsulated in stealth liposomes conferred with light-triggered drug release.
Stealth liposomes can be used to extend the blood circulation time of encapsulated therapeutics. Inclusion of 2 molar % porphyrin-phospholipid (PoP) imparted optimal near infrared (NIR) light-triggered release of doxorubicin (Dox) from conventional sterically stabilized stealth liposomes. The type and amount of PoP affected drug loading, serum stability and drug release induced by NIR light. Ch...
متن کاملPharmacokinetics of stealth versus conventional liposomes: effect of dose.
Liposomes which substantially avoid uptake into the mononuclear phagocyte system (MPS), termed Stealth liposomes, have recently been formulated (Allen, T.M. and Chonn, A., (1987) FEBS Lett. 223, 42-46). The pharmacokinetics of stealth liposomes as a function of liposome dose and a comparison to conventional liposome pharmacokinetics, was the subject of the present study. We have examined the ti...
متن کامل