Geophysical, archaeological, and historical evidence support a solar-output model for climate change.

نویسندگان

  • C A Perry
  • K J Hsu
چکیده

Although the processes of climate change are not completely understood, an important causal candidate is variation in total solar output. Reported cycles in various climate-proxy data show a tendency to emulate a fundamental harmonic sequence of a basic solar-cycle length (11 years) multiplied by 2(N) (where N equals a positive or negative integer). A simple additive model for total solar-output variations was developed by superimposing a progression of fundamental harmonic cycles with slightly increasing amplitudes. The timeline of the model was calibrated to the Pleistocene/Holocene boundary at 9,000 years before present. The calibrated model was compared with geophysical, archaeological, and historical evidence of warm or cold climates during the Holocene. The evidence of periods of several centuries of cooler climates worldwide called "little ice ages," similar to the period anno Domini (A.D.) 1280-1860 and reoccurring approximately every 1,300 years, corresponds well with fluctuations in modeled solar output. A more detailed examination of the climate sensitive history of the last 1, 000 years further supports the model. Extrapolation of the model into the future suggests a gradual cooling during the next few centuries with intermittent minor warmups and a return to near little-ice-age conditions within the next 500 years. This cool period then may be followed approximately 1,500 years from now by a return to altithermal conditions similar to the previous Holocene Maximum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sorce Contributions to New Understanding of Global Change and Solar Variability

An array of empirical evidence in the space era, and in the past, suggests that climate responds to solar activity. The response mechanisms are thought to be some combination of direct surface heating, indirect processes involving UV radiation and the stratosphere, and modulation of internal climate system oscillations. A quantitative physical description is, as yet, lacking to explain the empi...

متن کامل

Climate change effects on wheat yield and water use in oasis cropland

Agriculture of the inland arid region in Xinjiang depends on irrigation, which forms oasis of Northwest China. The production and water use of wheat, a dominant crop there, is significantly affected by undergoing climate variability and change. The objective of this study is to quantify inter-annual variability of wheat yield and water use from 1955 to 2006. The farming systems model APSIM (Agr...

متن کامل

An investigation on the climate and ecology of the southeast region of the Caspian Sea in the first millennium AD based on archaeological data

The vegetation covering of a region has a direct correlation with climate. So if data is available for vegetation cover, the second variable (climate) can be easily predicted and in reverse. The dominant species in a region are indication of its climatic conditions and vice versa. Accordingly, this is of significance in the science of historical botany. Fortunately, from the first millennium A...

متن کامل

Simulation and Analysis of Solar Chimney Models based on Bam Climate Theory

One of the methods of generating electricity from solar energy is using solar chimney technology. In this research we have studied four proposed physical models of solar chimney by examining Iran's climate map and selecting the appropriate region for the power plant site. This study is a numerical simulation of four physical models of solar chimney in Bam city, Kerman province. According to val...

متن کامل

A flood risk projection for Soleimantangeh Dam against future climate change

A sensitivity analysis of the flood safety of Solaimantangeh dam using a regional climate change simulation is presented. Based on the output of the CCSM (Community Climate Change System Model) general circulation model, the NIRCM (North of Iran Regional Climate Model) computes regional scale output with 50 km spatial resolution and 21 vertical layers. Using the SRES (Special Report Emission Sc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 97 23  شماره 

صفحات  -

تاریخ انتشار 2000