An Extension Theorem in Symplectic Geometry

نویسنده

  • FELIX SCHLENK
چکیده

We extend the “Extension after Restriction Principle” for symplectic embeddings of bounded starlike domains to a large class of symplectic embeddings of unbounded starlike domains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New High Order Closed Newton-Cotes Trigonometrically-fitted Formulae for the Numerical Solution of the Schrodinger Equation

In this paper, we investigate the connection between closed Newton-Cotes formulae, trigonometrically-fitted methods, symplectic integrators and efficient integration of the Schr¨odinger equation. The study of multistep symplectic integrators is very poor although in the last decades several one step symplectic integrators have been produced based on symplectic geometry (see the relevant lit...

متن کامل

The Normal Form Theorem around Poisson Transversals

We prove a normal form theorem for Poisson structures around Poisson transversals (also called cosymplectic submanifolds), which simultaneously generalizes Weinstein’s symplectic neighborhood theorem from symplectic geometry [12] and Weinstein’s splitting theorem [14]. Our approach turns out to be essentially canonical, and as a byproduct, we obtain an equivariant version of the latter theorem.

متن کامل

From Hamiltonian Systems to Poisson Geometry

We introduce Hamiltonian systems and derive an important stability result, along with giving some physical motivation. We then move onto the generalization of these systems found in symplectic geometry. Next we consider symplectic geometry’s natural generalization, Poisson geometry. After giving some definitions we present the motivating example of the torqueless Euler equations. These motivate...

متن کامل

What Is Symplectic Geometry?

In this talk we explain the elements of symplectic geometry, and sketch the proof of one of its foundational results — Gromov’s nonsqueezing theorem — using J-holomorphic curves.

متن کامل

Hyperkähler embeddings and holomorphic symplectic geometry I. Mikhail Verbitsky,

Hyperkähler embeddings and holomorphic symplectic geometry I. 0. Introduction. In this paper we are studying complex analytic subvarieties of a given Kähler manifold which is endowed with a holomorphic symplectic structure. By Calabi-Yau theorem, the holomorphically symplectic Kähler mani-folds can be supplied with a Ricci-flat Riemannian metric. This implies that such manifolds are hyperkähler...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001