Modeling and Simulation of Network Aspects for Distributed Cyber-Physical Energy Systems∗
نویسندگان
چکیده
Electric power grids are presently being integrated with sensors that provide measurements at high rates and resolution. The abundance of sensor measurements, as well as the added complexity of applications trigger a demand for cyber-physical system (CPS) modeling and simulation for evaluating the characteristics of appropriate network fabrics, timing profiles and distributed application workflow of power applications. Although simulation aids in the pre-deployment decision making process, system models for complex CPS can quickly become impractical for the purposes of specialized evaluation of design aspects. Existing modeling techniques are inadequate for capturing the heterogeneous nature of CPS and tend to inherently couple orthogonal design concerns. To address this issue, we present an aspect-oriented modeling and simulation paradigm. The aspect-oriented approach provides a separation between functional models and cross-cutting modeling concerns such as network topology, latency profiles, security aspects, and quality of service (QoS) requirements. As a case study, we consider a three-area smart grid topology and demonstrate the aspect-oriented approach to modeling network and middleware behavior for a distributed state estimation application. We also explore how aspects leverage scalable co-simulation, fault modeling, and middleware-in-the loop simulation for complex smart grid models.
منابع مشابه
Approaches to Modeling and Simulation for Dynamic, Distributed Cyber-Physical Systems
In this paper we discuss challenges and new directions in modeling and simulation for effects-based what-if and sensitivity analysis of dynamic, distributed cyber-physical systems. We are motivated on one hand by the critical need to reliably understand how mission-critical cyber-physical systems would respond to unanticipated effects, and on the other hand by the technology gap that has preven...
متن کاملOptimal Placement of DGs in Distribution System including Different Load Models for Loss Reduction using Genetic Algorithm
Distributed generation (DG) sources are becoming more prominent in distribution systems due to the incremental demands for electrical energy. Locations and capacities of DG sources have great impacts on the system losses in a distribution network. This paper presents a study aimed for optimally determining the size and location of distributed generation units in distribution systems with differ...
متن کاملOptimal Placement of DGs in Distribution System including Different Load Models for Loss Reduction using Genetic Algorithm
Distributed generation (DG) sources are becoming more prominent in distribution systems due to the incremental demands for electrical energy. Locations and capacities of DG sources have great impacts on the system losses in a distribution network. This paper presents a study aimed for optimally determining the size and location of distributed generation units in distribution systems with differ...
متن کاملCyber-Physical Systems Modeling and Simulation with Modelica
This paper introduces the area of Cyber-Physical Systems (CPS) and describes the relation to Modelica and Modelica-based tools. Special aspects of CPS applications that should make Modelica well suited for their modeling and simulation are highlighted. Recent Modelica developments facilitating integrated model-based system development applicable to CPS are presented. Especially, it is shown how...
متن کاملModeling of Future Cyber-Physical Energy Systems for Distributed Sensing and Control
This paper proposes modeling the rapidly evolving energy systems as cyber-based physical systems. It introduces a novel cyber-based dynamical model whose mathematical description depends on the cyber technologies supporting the physical system. This paper discusses how such a model can be used to ensure full observability through a cooperative information exchange among its components; this is ...
متن کامل