Bayesian Networks as Ensemble of Classifiers
نویسندگان
چکیده
Abstract Classification of real-world data poses a number of challenging problems. Mismatch between classifier models and true data distributions on one hand and the use of approximate inference methods on the other hand all contribute to inaccurate classification. Recent work on boosting by Schapire et al. and additive probabilistic models by Hastie et al. have shown that improved classification can be achieved by linearly combining a number of simple classifiers. Building upon this spirit, we present a Bayesian network-based framework for mixing multiple classifiers. We also analyze the bound on the generalization error for this combined classifier. We give results on some standard datasets and demonstrate its usefulness in a real-world task of multimodal speaker detection where we improve upon performance of a more complex Bayesian network model. Improved results indicate the significant potential of the Bayesian network of classifiers approach.
منابع مشابه
A Novel Ensemble Approach for Anomaly Detection in Wireless Sensor Networks Using Time-overlapped Sliding Windows
One of the most important issues concerning the sensor data in the Wireless Sensor Networks (WSNs) is the unexpected data which are acquired from the sensors. Today, there are numerous approaches for detecting anomalies in the WSNs, most of which are based on machine learning methods. In this research, we present a heuristic method based on the concept of “ensemble of classifiers” of data minin...
متن کاملEnsemble Classification and Extended Feature Selection for Credit Card Fraud Detection
Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...
متن کاملApplication of ensemble learning techniques to model the atmospheric concentration of SO2
In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...
متن کاملA Preprocessing Technique to Investigate the Stability of Multi-Objective Heuristic Ensemble Classifiers
Background and Objectives: According to the random nature of heuristic algorithms, stability analysis of heuristic ensemble classifiers has particular importance. Methods: The novelty of this paper is using a statistical method consists of Plackett-Burman design, and Taguchi for the first time to specify not only important parameters, but also optimal levels for them. Minitab and Design Expert ...
متن کاملPredicting the Severity of Breast Masses with Ensemble of Bayesian Classifiers
Problem statement: This study evaluated two different Bayesian classifiers; tree augmented Naive Bayes and Markov blanket estimation networks in order to build an ensemble model for prediction the severity of breast masses. The objective of the proposed algorithm was to help physicians in their decisions to perform a breast biopsy on a suspicious lesion seen in a mammogram image or to perform a...
متن کاملPruning GP-Based Classifier Ensembles by Bayesian Networks
Classifier ensemble techniques are effectively used to combine the responses provided by a set of classifiers. Classifier ensembles improve the performance of single classifier systems, even if a large number of classifiers is often required. This implies large memory requirements and slow speeds of classification, making their use critical in some applications. This problem can be reduced by s...
متن کامل